Here is a summary chart of the Nashviile rent rates
Two-bedroom stats, by rent category | ||||
Rent_Category | Count | Minimum | Average | Maximum |
---|---|---|---|---|
Above average | 28 | 1930 | 2309.286 | 2740 |
Below average | 52 | 1460 | 1713.462 | 1920 |
CODE:
# Getting and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("openxlsx"))
install.packages("openxlsx")
if (!require("gtExtras"))
install.packages("gtExtras")
if (!require("leafpop"))
install.packages("leafpop")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("RColorBrewer"))
install.packages("RColorBrewer")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(openxlsx)
library(gtExtras)
library(readxl)
library(sf)
library(mapview)
library(leafpop)
library(RColorBrewer)
library(tidycensus)
# Reading data from:
# https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx
# Note that you are downloading the 2025 data. We have been working with 2024 data.
# The data frame should have 51,899 observations of 18 variables
download.file("https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx", "rent.xlsx", mode = "wb")
FMR <- read_xlsx(path = "rent.xlsx", .name_repair = "universal")
# Making a list of Nashville-area ZIP codes
ZIPList <- c(
"37135",
"37215",
"37064",
"37060",
"37014",
"37122",
"37027",
"37046",
"37221",
"37153",
"37210",
"37202",
"37024",
"37218",
"37062",
"37179",
"37025",
"37206",
"37065",
"37214",
"37067",
"37246",
"37068",
"37167",
"37069",
"37189",
"37070",
"37204",
"37072",
"37208",
"37076",
"37212",
"37080",
"37216",
"37085",
"37020",
"37086",
"38476",
"37089",
"37160",
"37090",
"37174",
"37115",
"37180",
"37116",
"37201",
"37118",
"37203",
"37015",
"37205",
"37127",
"37207",
"37128",
"37209",
"37129",
"37211",
"37130",
"37213",
"37220",
"37037",
"37222",
"37217",
"37228",
"37219",
"37232",
"37013",
"37131",
"37224",
"37132",
"37229",
"37133",
"37236",
"37238",
"37240",
"37243",
"37138",
"38401",
"37143",
"37011",
"37149"
)
# Filtering for Nashville-area ZIP codes and
# selecting columns of interest
# FMR_Nash data frame should have 80 observations of six variables
FMR_Nash <- FMR %>%
filter(ZIP.Code %in% ZIPList) %>%
select(ZIP.Code, SAFMR.0BR, SAFMR.1BR, SAFMR.2BR, SAFMR.3BR, SAFMR.4BR) %>%
distinct()
# Renaming the columns
colnames(FMR_Nash) <- c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4")
# Averaging estimates
FMR_Nash <- FMR_Nash %>%
mutate(ZIP_Average = (Studio + BR1 + BR2 + BR3 + BR4) / 5)
# Sorting in descending order by ZIP_Average
FMR_Nash <- FMR_Nash %>%
arrange(desc(ZIP_Average))
# Finding the average of the ZIP_Average values
Average_ZIP_Average <- mean(FMR_Nash$ZIP_Average)
Average_ZIP_Average
# Recoding
FMR_Nash <- FMR_Nash %>%
mutate(
Rent_Category = case_when(
ZIP_Average > Average_ZIP_Average ~ "Above average",
ZIP_Average == Average_ZIP_Average ~ "Average",
ZIP_Average < Average_ZIP_Average ~ "Below average",
.default = "Error"))
# Showing the data as a table
FMR_Nash_table <- gt(FMR_Nash) %>%
tab_header("Nashville-area FMR, by size and ZIP") %>%
cols_align(align = "left") %>%
gt_theme_538
FMR_Nash_table
# Summarize the data for BR2 (two-bedroom stats)
Summary_BR2 <- FMR_Nash %>%
group_by(Rent_Category) %>%
summarise(
Count = n(),
Minimum = min(BR2, na.rm = TRUE),
Average = mean(BR2, na.rm = TRUE),
Maximum = max(BR2, na.rm = TRUE)
) %>%
arrange(Rent_Category)
# Check the summary table
print(Summary_BR2)
# Show the summary table using gt for formatting
Summary_Nash <- gt(Summary_BR2) %>%
tab_header("Two-bedroom stats, by rent category") %>%
cols_align(align = "left") %>%
gt_theme_538()
# Show the table
Summary_Nash