Here is a interactive map that shows the Nashville/surrounding areas of rent, using a colorful color pallet
# Getting and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("openxlsx"))
install.packages("openxlsx")
if (!require("gtExtras"))
install.packages("gtExtras")
if (!require("leafpop"))
install.packages("leafpop")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("RColorBrewer"))
install.packages("RColorBrewer")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(openxlsx)
library(gtExtras)
library(readxl)
library(sf)
library(mapview)
library(leafpop)
library(RColorBrewer)
library(tidycensus)
# Reading data from:
# https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx
# Note that you are downloading the 2025 data. We have been working with 2024 data.
# The data frame should have 51,899 observations of 18 variables
download.file("https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx", "rent.xlsx", mode = "wb")
FMR <- read_xlsx(path = "rent.xlsx", .name_repair = "universal")
# Making a list of Nashville-area ZIP codes
ZIPList <- c(
"37135",
"37215",
"37064",
"37060",
"37014",
"37122",
"37027",
"37046",
"37221",
"37153",
"37210",
"37202",
"37024",
"37218",
"37062",
"37179",
"37025",
"37206",
"37065",
"37214",
"37067",
"37246",
"37068",
"37167",
"37069",
"37189",
"37070",
"37204",
"37072",
"37208",
"37076",
"37212",
"37080",
"37216",
"37085",
"37020",
"37086",
"38476",
"37089",
"37160",
"37090",
"37174",
"37115",
"37180",
"37116",
"37201",
"37118",
"37203",
"37015",
"37205",
"37127",
"37207",
"37128",
"37209",
"37129",
"37211",
"37130",
"37213",
"37220",
"37037",
"37222",
"37217",
"37228",
"37219",
"37232",
"37013",
"37131",
"37224",
"37132",
"37229",
"37133",
"37236",
"37238",
"37240",
"37243",
"37138",
"38401",
"37143",
"37011",
"37149"
)
# Filtering for Nashville-area ZIP codes and
# selecting columns of interest
# FMR_Nash data frame should have 80 observations of six variables
FMR_Nash <- FMR %>%
filter(ZIP.Code %in% ZIPList) %>%
select(ZIP.Code, SAFMR.0BR, SAFMR.1BR, SAFMR.2BR, SAFMR.3BR, SAFMR.4BR) %>%
distinct()
# Renaming the columns
colnames(FMR_Nash) <- c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4")
# Averaging estimates
FMR_Nash <- FMR_Nash %>%
mutate(ZIP_Average = (Studio + BR1 + BR2 + BR3 + BR4) / 5)
# Sorting in descending order by ZIP_Average
FMR_Nash <- FMR_Nash %>%
arrange(desc(ZIP_Average))
# Finding the average of the ZIP_Average values
Average_ZIP_Average <- mean(FMR_Nash$ZIP_Average)
Average_ZIP_Average
# Recoding
FMR_Nash <- FMR_Nash %>%
mutate(
Rent_Category = case_when(
ZIP_Average > Average_ZIP_Average ~ "Above average",
ZIP_Average == Average_ZIP_Average ~ "Average",
ZIP_Average < Average_ZIP_Average ~ "Below average",
.default = "Error"))
# Showing the data as a table
FMR_Nash_table <- gt(FMR_Nash) %>%
tab_header("Nashville-area FMR, by size and ZIP") %>%
cols_align(align = "left") %>%
gt_theme_538
FMR_Nash_table
Summary_Nash <- FMR_Nash %>%
group_by(Rent_Category) %>%
summarize(Average = mean(ZIP_Average))
# Sorting the Summary_BR3 file in descending order
Summary_Nash <- Summary_Nash %>%
arrange(desc(Average))
# Grouping and summarizing
Summary_Nash <- FMR_Nash %>%
group_by(Rent_Category) %>%
summarize(Count = n(),
Minimum = min(ZIP_Average),
Average = round(mean(ZIP_Average), 0),
Maximum = max(ZIP_Average))
# Making the table
Summary_Nash_table <- gt(Summary_Nash) %>%
tab_header("Nashville stats, by rent category") %>%
cols_align(align = "left") %>%
gt_theme_538
# Showing the table
Summary_Nash_table
# Redownloading, unzipping and importing the ZIP code map file
download.file(
"https://www2.census.gov/geo/tiger/GENZ2020/shp/cb_2020_us_zcta520_500k.zip",
"ZCTAs2020.zip"
)
unzip("ZCTAs2020.zip")
ZCTAMap <- read_sf("cb_2020_us_zcta520_500k.shp")
# Merging the rent data and ZIP code map
FMR_Nash$ZIP <- as.character(FMR_Nash$ZIP)
FMR_Nash_Map <- left_join(FMR_Nash, ZCTAMap, by = c("ZIP" = "ZCTA5CE20"))
FMR_Nash_Map <- FMR_Nash_Map %>%
select(-c(AFFGEOID20, GEOID20, NAME20, LSAD20, ALAND20, AWATER20))
FMR_Nash_Map <- st_as_sf(FMR_Nash_Map)
# Transmitting API key
census_api_key("32a6d157cbd9ca98ee8b0dcaf65290d150813e2b")
# Fetching the Census data
Census_Data <- get_acs(
geography = "zcta",
variables = c("DP04_0047", "DP04_0045"),
year = 2023,
survey = "acs5",
output = "wide",
geometry = FALSE
)
# Making better column names
Census_Data <- Census_Data %>%
rename(c("Rentals" = "DP04_0047E",
"Rentals_MOE" = "DP04_0047M",
"Households" = "DP04_0045E",
"Households_MOE" = "DP04_0045M"))
# A peek at the data
glimpse(Census_Data)
# Merging the rent data and ZIP code map
FMR_Nash$ZIP <- as.character(FMR_Nash$ZIP)
FMR_Nash_Map <- left_join(FMR_Nash, ZCTAMap, by = c("ZIP" = "ZCTA5CE20"))
FMR_Nash_Map <- FMR_Nash_Map %>%
select(-c(AFFGEOID20, GEOID20, NAME20, LSAD20, ALAND20, AWATER20))
FMR_Nash_Map <- st_as_sf(FMR_Nash_Map)
# Merging FMR_RuCo_Map and Census_Data
FMR_Nash_Map <- left_join(FMR_Nash_Map, Census_Data, by = c("ZIP" = "GEOID"))
# Mapping by ZIP code
ZIP_Map <- mapview(
FMR_Nash_Map,
zcol = "ZIP_Average",
col.regions = brewer.pal(43, "YlOrRd"),
layer.name = "Average rent",
popup = popupTable(
FMR_Nash_Map,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4",
"Rentals", "Rentals_MOE", "Households", "Households_MOE")
)
)
# Showing the map
FMR_Nash_table
Summary_Nash_table
ZIP_Map