Importacion de datos

Archivo de Excel

library(readxl)
real_state_excel <- read_excel("C:/Users/PBFCIS-SPP-02/Desktop/Archivos para importar/real_state_excel.xlsx")
head(real_state_excel,n=10)
## # A tibble: 10 × 6
##    house_age dist_metro num_stores  lati longi price_house
##        <dbl>      <dbl>      <dbl> <dbl> <dbl>       <dbl>
##  1      32         84.9         10  25.0  122.        37.9
##  2      19.5      307.           9  25.0  122.        42.2
##  3      13.3      562.           5  25.0  122.        47.3
##  4      13.3      562.           5  25.0  122.        54.8
##  5       5        391.           5  25.0  122.        43.1
##  6       7.1     2175.           3  25.0  122.        32.1
##  7      34.5      623.           7  25.0  122.        40.3
##  8      20.3      288.           6  25.0  122.        46.7
##  9      31.7     5512.           1  25.0  121.        18.8
## 10      17.9     1783.           3  25.0  122.        22.1

Archivo CSV

Usando r base

real_state...real_state <- read.csv("C:/Users/PBFCIS-SPP-02/Desktop/Archivos para importar/real_state - real_state.csv")
head(real_state...real_state,n=2)
##   house_age dist_metro num_stores      lati      longi price_house
## 1      32.0  8.487.882         10 2.498.298 12.154.024        37.9
## 2      19.5  3.065.947          9 2.498.034 12.153.951        42.2

Usando readr

library(readr)
## Warning: package 'readr' was built under R version 4.4.2
real_state_real_state <- read_csv("C:/Users/PBFCIS-SPP-02/Desktop/Archivos para importar/real_state - real_state.csv", 
    col_types = cols(dist_metro = col_number(), 
        lati = col_number(), longi = col_number()))
head(real_state_real_state)
## # A tibble: 6 × 6
##   house_age dist_metro num_stores  lati longi price_house
##       <dbl>      <dbl>      <dbl> <dbl> <dbl>       <dbl>
## 1      32         8.49         10  2.50  12.2        37.9
## 2      19.5       3.06          9  2.50  12.2        42.2
## 3      13.3       5.62          5  2.50  12.2        47.3
## 4      13.3       5.62          5  2.50  12.2        54.8
## 5       5         3.90          5  2.50  12.2        43.1
## 6       7.1    2175.            3  2.50  12.2        32.1

Archivo de SPSS (sav)

library(haven)
## Warning: package 'haven' was built under R version 4.4.2
empresas <- read_sav("C:/Users/PBFCIS-SPP-02/Desktop/Archivos para importar/empresas.sav")
head(empresas)
## # A tibble: 6 × 10
##   ID           AGR   MIN   MAN   CEN   CON   SER   BAN SECSER    TC
##   <chr>      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1 Bélgica      3.3   0.9  27.6   0.9   8.2  19.1   6.2   26.6   7.2
## 2 Dinamarca    9.2   0.1  21.8   0.6   8.3  14.6   6.5   32.2   7.1
## 3 Francia     10.8   0.8  27.5   0.9   8.9  16.8   6     22.6   5.7
## 4 Alemania O   6.7   1.3  35.8   0.9   7.3  14.4   5     22.3   6.1
## 5 Irlanda     23.2   1    20.7   1.3   7.5  16.8   2.8   20.8   6.1
## 6 Italia      15.9   0.6  27.6   0.5  10    18.1   1.6   20.1   5.7

Archivo de Stata

library(haven)
pwt91_capital_detail <- read_dta("C:/Users/PBFCIS-SPP-02/Desktop/Archivos para importar/pwt91_capital_detail.dta")
head(pwt91_capital_detail,n=30)
## # A tibble: 30 × 34
##    countrycode  year Ic_Struc Ic_Mach Ic_TraEq Ic_Other Ip_Struc Ip_Mach
##    <chr>       <dbl>    <dbl>   <dbl>    <dbl>    <dbl>    <dbl>   <dbl>
##  1 ABW          1950       NA      NA       NA       NA       NA      NA
##  2 ABW          1951       NA      NA       NA       NA       NA      NA
##  3 ABW          1952       NA      NA       NA       NA       NA      NA
##  4 ABW          1953       NA      NA       NA       NA       NA      NA
##  5 ABW          1954       NA      NA       NA       NA       NA      NA
##  6 ABW          1955       NA      NA       NA       NA       NA      NA
##  7 ABW          1956       NA      NA       NA       NA       NA      NA
##  8 ABW          1957       NA      NA       NA       NA       NA      NA
##  9 ABW          1958       NA      NA       NA       NA       NA      NA
## 10 ABW          1959       NA      NA       NA       NA       NA      NA
## # ℹ 20 more rows
## # ℹ 26 more variables: Ip_TraEq <dbl>, Ip_Other <dbl>, Nc_Struc <dbl>,
## #   Nc_Mach <dbl>, Nc_TraEq <dbl>, Nc_Other <dbl>, Np_Struc <dbl>,
## #   Np_Mach <dbl>, Np_TraEq <dbl>, Np_Other <dbl>, Dc_Struc <dbl>,
## #   Dc_Mach <dbl>, Dc_TraEq <dbl>, Dc_Other <dbl>, Kc_Struc <dbl>,
## #   Kc_Mach <dbl>, Kc_TraEq <dbl>, Kc_Other <dbl>, Kp_Struc <dbl>,
## #   Kp_Mach <dbl>, Kp_TraEq <dbl>, Kp_Other <dbl>, Ksh_Struc <dbl>, …