library(pacman)
p_load(nycflights13)
#View(flights)
summary(flights)
## year month day dep_time sched_dep_time
## Min. :2013 Min. : 1.000 Min. : 1.00 Min. : 1 Min. : 106
## 1st Qu.:2013 1st Qu.: 4.000 1st Qu.: 8.00 1st Qu.: 907 1st Qu.: 906
## Median :2013 Median : 7.000 Median :16.00 Median :1401 Median :1359
## Mean :2013 Mean : 6.549 Mean :15.71 Mean :1349 Mean :1344
## 3rd Qu.:2013 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:1744 3rd Qu.:1729
## Max. :2013 Max. :12.000 Max. :31.00 Max. :2400 Max. :2359
## NA's :8255
## dep_delay arr_time sched_arr_time arr_delay
## Min. : -43.00 Min. : 1 Min. : 1 Min. : -86.000
## 1st Qu.: -5.00 1st Qu.:1104 1st Qu.:1124 1st Qu.: -17.000
## Median : -2.00 Median :1535 Median :1556 Median : -5.000
## Mean : 12.64 Mean :1502 Mean :1536 Mean : 6.895
## 3rd Qu.: 11.00 3rd Qu.:1940 3rd Qu.:1945 3rd Qu.: 14.000
## Max. :1301.00 Max. :2400 Max. :2359 Max. :1272.000
## NA's :8255 NA's :8713 NA's :9430
## carrier flight tailnum origin
## Length:336776 Min. : 1 Length:336776 Length:336776
## Class :character 1st Qu.: 553 Class :character Class :character
## Mode :character Median :1496 Mode :character Mode :character
## Mean :1972
## 3rd Qu.:3465
## Max. :8500
##
## dest air_time distance hour
## Length:336776 Min. : 20.0 Min. : 17 Min. : 1.00
## Class :character 1st Qu.: 82.0 1st Qu.: 502 1st Qu.: 9.00
## Mode :character Median :129.0 Median : 872 Median :13.00
## Mean :150.7 Mean :1040 Mean :13.18
## 3rd Qu.:192.0 3rd Qu.:1389 3rd Qu.:17.00
## Max. :695.0 Max. :4983 Max. :23.00
## NA's :9430
## minute time_hour
## Min. : 0.00 Min. :2013-01-01 05:00:00.00
## 1st Qu.: 8.00 1st Qu.:2013-04-04 13:00:00.00
## Median :29.00 Median :2013-07-03 10:00:00.00
## Mean :26.23 Mean :2013-07-03 05:22:54.64
## 3rd Qu.:44.00 3rd Qu.:2013-10-01 07:00:00.00
## Max. :59.00 Max. :2013-12-31 23:00:00.00
##
#summarise(flights, delay=mean(dep_delay,na.rm=TRUE))
#2
maxdep <- max(flights$dep_delay, na.rm=TRUE)
maxdep_id <- which(flights$dep_delay==maxdep)
flights[maxdep_id, 10:12]
## # A tibble: 1 × 3
## carrier flight tailnum
## <chr> <int> <chr>
## 1 HA 51 N384HA
#sortf <- arrange(flights,desc(dep_delay))
#select(sortf, carrier, flight, tailnum, everything())
#2
#select(flights, starts_with("dep"))
#2
#not_cancelled <- flights %>%
#filter(!is.na(dep_delay))
#not_cancelled %>%
#group_by(year, month, day) %>%
#summarise(mean = mean(dep_delay))
#3
#flights %>%
#group_by(year, month, day) %>%
#summarise(mean = mean(dep_delay, na.rm = TRUE))
#3
#not_cancelled <- flights %>%
#filter(!is.na(dep_delay), !is.na(arr_delay))
#4
#not_cancelled <- flights %>%
#filter(!is.na(dep_delay))
#lowest_arr_delay <- not_cancelled %>%
#group_by(tailnum) %>%
#summarise(mean_arr_delay = mean(arr_delay, na.rm = TRUE)) %>%
#slice_min(mean_arr_delay, n = 1)
#print(lowest_arr_delay)
#5
#not_cancelled %>%
#group_by(year, month, day) %>%
#summarise(
#first = min(dep_time),
#last = max(dep_time)
#)
#6
#monthly_delay_proportion <- flights %>%
#group_by(month) %>%
#summarise(
#total_flights = n(),
#delayed_flights = sum(dep_delay > 60, na.rm = TRUE),
#proportion_delayed = delayed_flights / total_flights
#) %>%
#print(monthly_delay_proportion)
#7
#dest_carriers <- flights %>%
#group_by(dest) %>%
#summarise(num_carriers = n_distinct(carrier)) %>%
#arrange(desc(num_carriers))
#max_carriers <- max(dest_carriers$num_carriers)
#most_carriers_dest <- dest_carriers %>%
#filter(num_carriers == max_carriers)
#print(most_carriers_dest)
#9
#delays <- flights %>%
#group_by(dest) %>%
#summarise(
#count = n(),
#dist = mean(distance, na.rm = TRUE),
#delay = mean(arr_delay, na.rm = TRUE)
#) %>%
#filter(count > 20, dest != "HNL")