Chapter 04 (pg 189): 13, 14, 16

Chapter 04 Problem 13

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

library(ISLR2)
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
## 
##     Boston
library(e1071)
library(class)
attach(Weekly)

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

head(Weekly)
##   Year   Lag1   Lag2   Lag3   Lag4   Lag5    Volume  Today Direction
## 1 1990  0.816  1.572 -3.936 -0.229 -3.484 0.1549760 -0.270      Down
## 2 1990 -0.270  0.816  1.572 -3.936 -0.229 0.1485740 -2.576      Down
## 3 1990 -2.576 -0.270  0.816  1.572 -3.936 0.1598375  3.514        Up
## 4 1990  3.514 -2.576 -0.270  0.816  1.572 0.1616300  0.712        Up
## 5 1990  0.712  3.514 -2.576 -0.270  0.816 0.1537280  1.178        Up
## 6 1990  1.178  0.712  3.514 -2.576 -0.270 0.1544440 -1.372      Down
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
pairs(Weekly)

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

Answer:

Because the “Up’ direction occurs more frequently than”Down”, this data could suggest that there is a upward trend in the Weekly data during the 1990-2010 period. All the Lags have similar statistics, indicating that the market may be relatively stable during this period. Volume and Year are strongly correlated, however the lag variables and today’s returns have very little correlation.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

full_model <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly, family = binomial)
summary(full_model)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Answer:

There is only one predictor that is significant at the 0.05 level, which is Lag2.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

probs <- predict(full_model, type = "response")
probs[1:10]
##         1         2         3         4         5         6         7         8 
## 0.6086249 0.6010314 0.5875699 0.4816416 0.6169013 0.5684190 0.5786097 0.5151972 
##         9        10 
## 0.5715200 0.5554287
contrasts(Direction)
##      Up
## Down  0
## Up    1
pred = rep("Down", 1089)
pred[probs >.5] ="Up"
table(pred, Direction)
##       Direction
## pred   Down  Up
##   Down   54  48
##   Up    430 557
mean(pred == Direction)
## [1] 0.5610652

Answer:

Based on the confusion matrix, the model has an accuracy of ~56%. It does a good job predicting true positives, however it does struggle with false positives. It seems there is a bias toward the “Up” direction.

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train = (Year<2009)
Weekly.test = Weekly[!train,]
Direction.test = Direction[!train]
dim(Weekly.test)
## [1] 104   9
model2 <- glm(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
probs = predict(model2, Weekly.test, type = "response")
pred = rep("Down", 104)
pred[probs>.5]="Up"
table(pred, Direction.test)
##       Direction.test
## pred   Down Up
##   Down    9  5
##   Up     34 56
mean(pred == Direction.test)
## [1] 0.625

Answer:

This means that this model performed better than the first model with a ~62.5 accuracy. This model still favors the “Up” direction and has more false positives. This suggests that even with delegated training period and only using the significant predictor, there is still a class imbalance causing bias.

(e) Repeat (d) using LDA.

ldamodel <- lda(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
ldamodel
## Call:
## lda(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162
lda.pred = predict(ldamodel, Weekly.test)
lda.class=lda.pred$class
table(lda.class, Direction.test)
##          Direction.test
## lda.class Down Up
##      Down    9  5
##      Up     34 56
mean(lda.class == Direction.test)
## [1] 0.625

This means that this model performed better than the first model with a ~62.5% accuracy. It also performed exactly the same as the logistic regression with only Lag2. This model still favors the “Up” direction and has more false positives. This suggests that even with delegated training period and only using the significant predictor, there is still a class imbalance causing bias.

(f) Repeat (d) using QDA.

qdamodel <- qda(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
qdamodel
## Call:
## qda(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
qda.class = predict(qdamodel, Weekly.test)$class
table(qda.class, Direction.test)
##          Direction.test
## qda.class Down Up
##      Down    0  0
##      Up     43 61
mean(qda.class == Direction.test)
## [1] 0.5865385

Answer:

This means that this model performed better than the first model with a ~58.7% accuracy. However, it did perform worse than the logistic regression with only Log2 and LDA. This model still favors the “Up” direction and has a lot of false positives. This suggests that even with delegated training period and only using the significant predictor, there is still a class imbalance causing bias.

(g) Repeat (d) using KNN with K = 1

train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])
train.Direction = Direction[train]
test.Direction = Direction[!train]
set.seed(1)
knn.pred = knn(train.X, test.X, train.Direction, k=1)
table(knn.pred, test.Direction)
##         test.Direction
## knn.pred Down Up
##     Down   21 30
##     Up     22 31
mean(knn.pred == test.Direction)
## [1] 0.5

Answer:

This means that this model performed worse than any other model with a ~50% accuracy. This model still favors the “Up” direction and has the most of false negatives. This suggests that even with delegated training period and only using the significant predictor, there is still a class imbalance causing bias.

(h) Repeat (d) using naive Bayes.

nb <- naiveBayes(Direction~Lag2, data = Weekly, subset=train)
nb
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Conditional probabilities:
##       Lag2
## Y             [,1]     [,2]
##   Down -0.03568254 2.199504
##   Up    0.26036581 2.317485
pred.nb <- predict(nb, Weekly.test)
table(pred.nb, Direction.test)
##        Direction.test
## pred.nb Down Up
##    Down    0  0
##    Up     43 61
mean(pred.nb == Direction.test)
## [1] 0.5865385

This means that this model performed better than the first model and the KNN model with a ~58.7 accuracy. It does the same as the QDA. It performs worse than the logistic regression with only Lag2 and the LDA. This model still favors the “Up” direction and has more false positives. This suggests that even with delegated training period and only using the significant predictor, there is still a class imbalance causing bias.

(i) Which of these methods appears to provide the best results on this data?

The logistic regression with only Lag2 and the LDA have the best results on this data and the highest accuracy. This is followed by the QDA and Naive Bayes, and lastly the full logistic model and KNN.

(j) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

Here is an interaction term between Lag 2 and Lag 3:

model_interact1 <- glm(Direction ~ Lag2 * Lag3, data = Weekly, family = binomial, subset = train)
probs_interact1 = predict(model_interact1, Weekly.test, type = "response")
pred_interact1 = rep("Down", 104)
pred_interact1[probs_interact1 > .5] = "Up"
table(pred_interact1, Direction.test)
##               Direction.test
## pred_interact1 Down Up
##           Down    8  4
##           Up     35 57
mean(pred_interact1 == Direction.test)
## [1] 0.625

This means that this model performed worse than the logistic model with only Lag2 with a ~60.58 accuracy. This model still favors the “Up” direction and has more false positives. This suggests that even with delegated training period and adding an interaction term between Lag2 and Lag3, there is still a class imbalance causing bias.

Here is KNN with K= 3, 10, 15:

set.seed(1)
knn_pred_3 = knn(train.X, test.X, train.Direction, k = 3)
mean(knn_pred_3 == test.Direction)
## [1] 0.5480769
knn_pred_10 = knn(train.X, test.X, train.Direction, k = 10)
mean(knn_pred_10 == test.Direction)
## [1] 0.5865385
knn_pred_15 = knn(train.X, test.X, train.Direction, k = 15)
mean(knn_pred_15 == test.Direction)
## [1] 0.5865385

This means that all 3 of these KNNs performed better than the k=1 model with the best being k=10 and k=15 a ~58.65% accuracy.

Here is an LDA with Lag1, Lag2, and Volume:

lda_model2 <- lda(Direction ~ Lag1 + Lag2 + Volume, data = Weekly, subset = train)
lda_pred2 = predict(lda_model2, Weekly.test)$class
table(lda_pred2, Direction.test)
##          Direction.test
## lda_pred2 Down Up
##      Down   27 33
##      Up     16 28
mean(lda_pred2 == Direction.test)
## [1] 0.5288462

This means that this model performed worse than the first LDA model with a ~58.65% accuracy.. This model still favors the “Up” direction and has more false positives. This suggests that even with delegated training period and only using the significant predictor, there is still a class imbalance causing bias.

This proves that our original logistic regression with only Lag2 and the LDA have the best results on this data and the highest accuracy.

Chapter 04 Problem 14

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

attach(Auto)

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

mpg01<- median(Auto$mpg)
mpg01 <- ifelse(Auto$mpg > mpg01, 1, 0)
Auto<-data.frame(Auto,mpg01)
head(Auto)
##   mpg cylinders displacement horsepower weight acceleration year origin
## 1  18         8          307        130   3504         12.0   70      1
## 2  15         8          350        165   3693         11.5   70      1
## 3  18         8          318        150   3436         11.0   70      1
## 4  16         8          304        150   3433         12.0   70      1
## 5  17         8          302        140   3449         10.5   70      1
## 6  15         8          429        198   4341         10.0   70      1
##                        name mpg01
## 1 chevrolet chevelle malibu     0
## 2         buick skylark 320     0
## 3        plymouth satellite     0
## 4             amc rebel sst     0
## 5               ford torino     0
## 6          ford galaxie 500     0

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

pairs(Auto)

cor(Auto[,-9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
par(mfrow = c(2,2))
boxplot(cylinders ~ mpg01, data = Auto, main = "MPG01 by Cylinders")
boxplot(displacement ~ mpg01, data = Auto, main = "MPG01 by Displacement")
boxplot(horsepower ~ mpg01, data = Auto, main = "MPG01 by Horsepower")
boxplot(weight ~ mpg01, data = Auto, main = "MPG01 by Weight")

The correlation matrix for this dataset provides us insight that MPG01 is negatively correlated with variables: cylinders, displacement, horsepower, and weight. After producing boxplots of these variables, we can also tell that when the mpg is above the median (1), then these variables will be lower than when mpg is below the median (0).

(c) Split the data into a training set and a test set.

set.seed(1)

train <- sample(nrow(Auto), size = 0.7*nrow(Auto))
train_set <- Auto[train,]
test_set <- Auto[-train,]
mpg01.test<-mpg01[-train]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

lda_mpg01 <- lda(mpg01 ~ cylinders + displacement + horsepower + weight, data = train_set)
lda_pred_mpg01<- predict(lda_mpg01, test_set)
lda_class_mpg01<-lda_pred_mpg01$class
table(lda_class_mpg01, mpg01.test)
##                mpg01.test
## lda_class_mpg01  0  1
##               0 50  3
##               1 11 54
1-mean(lda_class_mpg01 == mpg01.test)
## [1] 0.1186441

Answer:

There is an approximate 11.86% test error of the model.

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda_mpg01 <- qda(mpg01 ~ cylinders + displacement + horsepower + weight, data = train_set)
qda_pred_mpg01 <- predict(qda_mpg01, test_set)
qda_class_mpg01 <- qda_pred_mpg01$class
table(qda_class_mpg01, mpg01.test)
##                mpg01.test
## qda_class_mpg01  0  1
##               0 52  5
##               1  9 52
1-mean(qda_class_mpg01 == mpg01.test)
## [1] 0.1186441

Answer:

Same as the LDA, the QDA approximated an 11.86% test error of the model.

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

log_mpg01 <- glm(mpg01 ~ cylinders + displacement + horsepower + weight, data = train_set, family = binomial)
log_pred_mpg01 <- predict(log_mpg01, test_set, type = "response")
log_class_mpg01 <- ifelse(log_pred_mpg01 > 0.5, 1, 0)
table(log_class_mpg01,mpg01.test)
##                mpg01.test
## log_class_mpg01  0  1
##               0 53  3
##               1  8 54
1-mean(log_class_mpg01 == mpg01.test)
## [1] 0.09322034

Answer:

The logistic regression model approximated an 9.32% test error of the model.

(g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

nb_mpg01 <- naiveBayes(mpg01 ~ cylinders + displacement + horsepower + weight, data = train_set)
nb_pred_mpg01 <- predict(nb_mpg01, test_set)
table(nb_pred_mpg01, mpg01.test)
##              mpg01.test
## nb_pred_mpg01  0  1
##             0 52  4
##             1  9 53
1-mean(nb_pred_mpg01 == mpg01.test)
## [1] 0.1101695

Answer:

The naive Bayes model approximated an 11.02% test error of the model.

(h) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set

train.X <- cbind(cylinders, displacement, horsepower, weight)[train,]
test.X <- cbind(cylinders, displacement, horsepower, weight)[-train,]
train.mpg01 <- mpg01[train]
set.seed(1)
pred.knn <-knn(train.X, test.X, train.mpg01, k=1)
table(pred.knn, mpg01.test)
##         mpg01.test
## pred.knn  0  1
##        0 51  6
##        1 10 51
1 - mean(pred.knn == mpg01.test)
## [1] 0.1355932

The KNN model for K = 1 has a test error rate of approximately 13.56%.

pred.knn <-knn(train.X, test.X, train.mpg01, k=100)
table(pred.knn, mpg01.test)
##         mpg01.test
## pred.knn  0  1
##        0 50  7
##        1 11 50
1 - mean(pred.knn == mpg01.test)
## [1] 0.1525424

The KNN model for K = 100 has a test error rate of approximately 15.25%.

pred.knn <-knn(train.X, test.X, train.mpg01, k=50)
table(pred.knn, mpg01.test)
##         mpg01.test
## pred.knn  0  1
##        0 49  7
##        1 12 50
1 - mean(pred.knn == mpg01.test)
## [1] 0.1610169

The KNN model for K = 50 has a test error rate of approximately 15.25%.

pred.knn <-knn(train.X, test.X, train.mpg01, k=15)
table(pred.knn, mpg01.test)
##         mpg01.test
## pred.knn  0  1
##        0 49  5
##        1 12 52
1 - mean(pred.knn == mpg01.test)
## [1] 0.1440678

The KNN model for K = 15 has a test error rate of approximately 14.41%.

pred.knn <-knn(train.X, test.X, train.mpg01, k=5)
table(pred.knn, mpg01.test)
##         mpg01.test
## pred.knn  0  1
##        0 51  5
##        1 10 52
1 - mean(pred.knn == mpg01.test)
## [1] 0.1271186

The KNN model for K = 5 has a test error rate of approximately 12.71%.

pred.knn <-knn(train.X, test.X, train.mpg01, k=3)
table(pred.knn, mpg01.test)
##         mpg01.test
## pred.knn  0  1
##        0 52  4
##        1  9 53
1 - mean(pred.knn == mpg01.test)
## [1] 0.1101695

The KNN model for K = 3 has a test error rate of approximately 11.02%.

pred.knn <-knn(train.X, test.X, train.mpg01, k=2)
table(pred.knn, mpg01.test)
##         mpg01.test
## pred.knn  0  1
##        0 52  6
##        1  9 51
1 - mean(pred.knn == mpg01.test)
## [1] 0.1271186

The KNN model for K = 3 has a test error rate of approximately 14.41%.

Answer: From the KNN models I tried, the K = 3 model had the lowest error rate of 11.02% making it the best model.

Chapter 04 Problem 16

Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings. Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set

attach(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
high_crim<- median(Boston$crim)
high_crim <- ifelse(Boston$crim > high_crim, 1, 0)
Boston<-data.frame(Boston,high_crim)
head(Boston)
##      crim zn indus chas   nox    rm  age    dis rad tax ptratio  black lstat
## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90  4.98
## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90  9.14
## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83  4.03
## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63  2.94
## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90  5.33
## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12  5.21
##   medv high_crim
## 1 24.0         0
## 2 21.6         0
## 3 34.7         0
## 4 33.4         0
## 5 36.2         0
## 6 28.7         0

plotting

cor(Boston)
##                  crim          zn       indus         chas         nox
## crim       1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn        -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus      0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas      -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox        0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm        -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age        0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis       -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad        0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax        0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio    0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black     -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat      0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv      -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
## high_crim  0.40939545 -0.43615103  0.60326017  0.070096774  0.72323480
##                    rm         age         dis          rad         tax
## crim      -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431
## zn         0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332
## indus     -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018
## chas       0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652
## nox       -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320
## rm         1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783
## age       -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559
## dis        0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158
## rad       -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819
## tax       -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000
## ptratio   -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304
## black      0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801
## lstat     -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341
## medv       0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593
## high_crim -0.15637178  0.61393992 -0.61634164  0.619786249  0.60874128
##              ptratio       black      lstat       medv   high_crim
## crim       0.2899456 -0.38506394  0.4556215 -0.3883046  0.40939545
## zn        -0.3916785  0.17552032 -0.4129946  0.3604453 -0.43615103
## indus      0.3832476 -0.35697654  0.6037997 -0.4837252  0.60326017
## chas      -0.1215152  0.04878848 -0.0539293  0.1752602  0.07009677
## nox        0.1889327 -0.38005064  0.5908789 -0.4273208  0.72323480
## rm        -0.3555015  0.12806864 -0.6138083  0.6953599 -0.15637178
## age        0.2615150 -0.27353398  0.6023385 -0.3769546  0.61393992
## dis       -0.2324705  0.29151167 -0.4969958  0.2499287 -0.61634164
## rad        0.4647412 -0.44441282  0.4886763 -0.3816262  0.61978625
## tax        0.4608530 -0.44180801  0.5439934 -0.4685359  0.60874128
## ptratio    1.0000000 -0.17738330  0.3740443 -0.5077867  0.25356836
## black     -0.1773833  1.00000000 -0.3660869  0.3334608 -0.35121093
## lstat      0.3740443 -0.36608690  1.0000000 -0.7376627  0.45326273
## medv      -0.5077867  0.33346082 -0.7376627  1.0000000 -0.26301673
## high_crim  0.2535684 -0.35121093  0.4532627 -0.2630167  1.00000000

crim, indus, nox, age, dis, rad, and tax seem somewhat correlated with high_crim.

splitting

set.seed(1)
train <- sample(nrow(Boston), size = 0.7*nrow(Boston))
train_set <- Boston[train,]
test_set <- Boston[-train,]
high_crim.test<-high_crim[-train]

Logistic regression:

log_high_crim <- glm(high_crim ~ . -high_crim - crim, data = train_set, family = binomial)
log_pred_high_crim <- predict(log_high_crim, test_set, type = "response")
log_class_high_crim <- ifelse(log_pred_high_crim > 0.5, 1, 0)
table(log_class_high_crim,high_crim.test)
##                    high_crim.test
## log_class_high_crim  0  1
##                   0 62  5
##                   1 11 74
1- mean(log_class_high_crim == high_crim.test)
## [1] 0.1052632

Answer:

The full logistic regression model approximated an 10.53% test error of the model.

log_high_crim2 <- glm(high_crim ~ . -high_crim - crim -rm -lstat -medv, data = train_set, family = binomial)
log_pred_high_crim2 <- predict(log_high_crim2, test_set, type = "response")
log_class_high_crim2 <- ifelse(log_pred_high_crim2 > 0.5, 1, 0)
table(log_class_high_crim2,high_crim.test)
##                     high_crim.test
## log_class_high_crim2  0  1
##                    0 61  5
##                    1 12 74
1- mean(log_class_high_crim2 == high_crim.test)
## [1] 0.1118421

Answer:

The logistic model without the variables approximated an 11.18% test error of the model, indicating that the full model had a slightly higher accuracy.

LDA

lda_high_crim <- lda(high_crim ~ . -high_crim - crim, data = train_set)
lda_pred_high_crim<- predict(lda_high_crim, test_set)
lda_class_high_crim<-lda_pred_high_crim$class
table(lda_class_high_crim, high_crim.test)
##                    high_crim.test
## lda_class_high_crim  0  1
##                   0 70 20
##                   1  3 59
1- mean(lda_class_high_crim == high_crim.test)
## [1] 0.1513158

The full LDA model approximated an 15.13% test error of the model.

lda_high_crim2 <- lda(high_crim ~ . -high_crim - crim -rm -lstat -medv, data = train_set)
lda_pred_high_crim2<- predict(lda_high_crim2, test_set)
lda_class_high_crim2<-lda_pred_high_crim2$class
table(lda_class_high_crim2, high_crim.test)
##                     high_crim.test
## lda_class_high_crim2  0  1
##                    0 71 20
##                    1  2 59
1- mean(lda_class_high_crim2 == high_crim.test)
## [1] 0.1447368

The LDA model without the weaker correlated variables approximated a 14.47% test error of the model. This indicates that this model is slightly better than the full model unlike the logistic model.

naive Bayes

nb_high_crim <- naiveBayes(high_crim ~ . -high_crim - crim, data = train_set)
nb_pred_high_crim <- predict(nb_high_crim, test_set)
table(nb_pred_high_crim, high_crim.test)
##                  high_crim.test
## nb_pred_high_crim  0  1
##                 0 68 20
##                 1  5 59
1- mean(nb_pred_high_crim == high_crim.test)
## [1] 0.1644737

The full naive Bayes model approximated an 16.45% test error of the model.

nb_high_crim2 <- naiveBayes(high_crim ~ . -high_crim - crim -rm -lstat -medv, data = train_set)
nb_pred_high_crim2 <- predict(nb_high_crim2, test_set)
table(nb_pred_high_crim2, high_crim.test)
##                   high_crim.test
## nb_pred_high_crim2  0  1
##                  0 65 22
##                  1  8 57
1- mean(nb_pred_high_crim2 == high_crim.test)
## [1] 0.1973684

The naive Bayes model without the weaker correlated variables approximated a 19.73% test error of the model. This indicates that this model is slightly better than the full model unlike the logistic model.

KNN models

train.X <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax,ptratio,black,lstat,medv)[train,]
test.X <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax,ptratio,black,lstat,medv)[-train,]
train.high_crim <- high_crim[train]
set.seed(1)
pred.knn_high_crim <-knn(train.X, test.X, train.high_crim, k=1)
table(pred.knn_high_crim, high_crim.test)
##                   high_crim.test
## pred.knn_high_crim  0  1
##                  0 65  6
##                  1  8 73
1 - mean(pred.knn_high_crim == high_crim.test)
## [1] 0.09210526

The full KNN model with k=1 gave us a test error rate of approximately 11.18%.

pred.knn_high_crim <-knn(train.X, test.X, train.high_crim, k=10)
table(pred.knn_high_crim, high_crim.test)
##                   high_crim.test
## pred.knn_high_crim  0  1
##                  0 59  9
##                  1 14 70
1 - mean(pred.knn_high_crim == high_crim.test)
## [1] 0.1513158

The full KNN model with k=10 gave us a test error rate of approximately 14.47%

pred.knn_high_crim <-knn(train.X, test.X, train.high_crim, k=6)
table(pred.knn_high_crim, high_crim.test)
##                   high_crim.test
## pred.knn_high_crim  0  1
##                  0 61  6
##                  1 12 73
1 - mean(pred.knn_high_crim == high_crim.test)
## [1] 0.1184211

The full KNN model with k=6 gave us a test error rate of approximately 11.84%.

train.X <- cbind(zn, indus, chas, nox, age, dis, rad, tax,ptratio,black)[train,]
test.X <- cbind(zn, indus, chas, nox, age, dis, rad, tax,ptratio,black)[-train,]
train.high_crim <- high_crim[train]
set.seed(1)
pred.knn_high_crim <-knn(train.X, test.X, train.high_crim, k=1)
table(pred.knn_high_crim, high_crim.test)
##                   high_crim.test
## pred.knn_high_crim  0  1
##                  0 64  4
##                  1  9 75
1 - mean(pred.knn_high_crim == high_crim.test)
## [1] 0.08552632

The KNN model with high correlated variables removed, produced a test error rate of approximately 8.55% at k=1.

pred.knn_high_crim <-knn(train.X, test.X, train.high_crim, k=5)
table(pred.knn_high_crim, high_crim.test)
##                   high_crim.test
## pred.knn_high_crim  0  1
##                  0 62  5
##                  1 11 74
1 - mean(pred.knn_high_crim == high_crim.test)
## [1] 0.1052632

The KNN model with high correlated variables removed, produced a test error rate of approximately 10.53% at k=5.

pred.knn_high_crim <-knn(train.X, test.X, train.high_crim, k=3)
table(pred.knn_high_crim, high_crim.test)
##                   high_crim.test
## pred.knn_high_crim  0  1
##                  0 64  4
##                  1  9 75
1 - mean(pred.knn_high_crim == high_crim.test)
## [1] 0.08552632

The KNN model with high correlated variables removed, produced a test error rate of approximately 8.55% at k=3 which is the same as k=1.