The first table shown displays the average rent in each of the zip codes for Nashville, Davidson, and Rutherford. The second table shows the average rent for two-bedroom apartments in summary form. The interactive map will show the average rent for each zip code including data from the US Census Bureau with information of how many households there are in each area.
Nashville FMR, by size and ZIP | |||||||
ZIP | Studio | BR1 | BR2 | BR3 | BR4 | ZIP_Average | Rent_Category |
---|---|---|---|---|---|---|---|
37069 | 2380 | 2470 | 2740 | 3460 | 4260 | 3062 | Above average |
37135 | 2380 | 2470 | 2740 | 3460 | 4260 | 3062 | Above average |
37220 | 2380 | 2470 | 2740 | 3460 | 4260 | 3062 | Above average |
37179 | 2350 | 2440 | 2700 | 3410 | 4200 | 3020 | Above average |
37201 | 2260 | 2350 | 2600 | 3280 | 4040 | 2906 | Above average |
37027 | 2220 | 2300 | 2550 | 3220 | 3960 | 2850 | Above average |
37219 | 2170 | 2260 | 2500 | 3160 | 3890 | 2796 | Above average |
37065 | 2150 | 2230 | 2470 | 3120 | 3840 | 2762 | Above average |
37068 | 2150 | 2230 | 2470 | 3120 | 3840 | 2762 | Above average |
37067 | 2120 | 2200 | 2440 | 3080 | 3790 | 2726 | Above average |
37215 | 2080 | 2160 | 2390 | 3020 | 3720 | 2674 | Above average |
37205 | 2070 | 2150 | 2380 | 3010 | 3700 | 2662 | Above average |
37014 | 2070 | 2150 | 2380 | 3000 | 3700 | 2660 | Above average |
37204 | 2040 | 2120 | 2350 | 2970 | 3650 | 2626 | Above average |
37122 | 2030 | 2100 | 2330 | 2940 | 3620 | 2604 | Above average |
37064 | 1980 | 2060 | 2280 | 2880 | 3540 | 2548 | Above average |
37221 | 1950 | 2020 | 2240 | 2830 | 3480 | 2504 | Above average |
37037 | 1940 | 2010 | 2230 | 2820 | 3470 | 2494 | Above average |
37174 | 1840 | 1890 | 2220 | 2810 | 3230 | 2398 | Above average |
37086 | 1820 | 1890 | 2090 | 2640 | 3250 | 2338 | Above average |
37214 | 1780 | 1850 | 2050 | 2590 | 3190 | 2292 | Above average |
37153 | 1760 | 1830 | 2020 | 2560 | 3140 | 2262 | Above average |
37203 | 1740 | 1810 | 2000 | 2530 | 3110 | 2238 | Above average |
37046 | 1700 | 1770 | 2000 | 2550 | 3030 | 2210 | Above average |
37209 | 1700 | 1770 | 1960 | 2480 | 3050 | 2192 | Above average |
37013 | 1680 | 1740 | 1930 | 2440 | 3000 | 2158 | Above average |
37128 | 1680 | 1740 | 1930 | 2440 | 3000 | 2158 | Above average |
37212 | 1680 | 1740 | 1930 | 2440 | 3000 | 2158 | Above average |
37208 | 1670 | 1730 | 1920 | 2430 | 2980 | 2146 | Below average |
37213 | 1670 | 1740 | 1920 | 2420 | 2980 | 2146 | Below average |
37206 | 1640 | 1710 | 1890 | 2390 | 2940 | 2114 | Below average |
37216 | 1640 | 1710 | 1890 | 2390 | 2940 | 2114 | Below average |
37228 | 1640 | 1710 | 1890 | 2390 | 2940 | 2114 | Below average |
37011 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37024 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37062 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37070 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37116 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37129 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37202 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37222 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37224 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37229 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37232 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37236 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37238 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37240 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37243 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37246 | 1630 | 1690 | 1870 | 2360 | 2910 | 2092 | Below average |
37076 | 1570 | 1630 | 1810 | 2290 | 2810 | 2022 | Below average |
37138 | 1550 | 1610 | 1780 | 2250 | 2770 | 1992 | Below average |
37211 | 1550 | 1610 | 1780 | 2250 | 2770 | 1992 | Below average |
37217 | 1550 | 1610 | 1780 | 2250 | 2770 | 1992 | Below average |
37072 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37089 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37131 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37133 | 1520 | 1580 | 1750 | 2210 | 2720 | 1956 | Below average |
37090 | 1500 | 1560 | 1730 | 2180 | 2680 | 1930 | Below average |
37060 | 1470 | 1540 | 1710 | 2170 | 2620 | 1902 | Below average |
37167 | 1450 | 1510 | 1670 | 2110 | 2600 | 1868 | Below average |
37115 | 1440 | 1500 | 1660 | 2100 | 2580 | 1856 | Below average |
37210 | 1430 | 1490 | 1650 | 2080 | 2560 | 1842 | Below average |
37127 | 1410 | 1460 | 1620 | 2050 | 2520 | 1812 | Below average |
37218 | 1410 | 1460 | 1620 | 2050 | 2520 | 1812 | Below average |
37143 | 1400 | 1450 | 1610 | 2030 | 2500 | 1798 | Below average |
37189 | 1370 | 1420 | 1570 | 1980 | 2440 | 1756 | Below average |
37085 | 1350 | 1410 | 1550 | 1960 | 2420 | 1738 | Below average |
37015 | 1330 | 1390 | 1540 | 1940 | 2390 | 1718 | Below average |
37130 | 1300 | 1350 | 1490 | 1880 | 2320 | 1668 | Below average |
37132 | 1300 | 1350 | 1490 | 1880 | 2320 | 1668 | Below average |
38476 | 1270 | 1310 | 1470 | 1860 | 2280 | 1638 | Below average |
37020 | 1270 | 1300 | 1460 | 1890 | 2240 | 1632 | Below average |
37207 | 1270 | 1320 | 1460 | 1840 | 2270 | 1632 | Below average |
37025 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37080 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37118 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37149 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37160 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
37180 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
38401 | 1270 | 1300 | 1460 | 1840 | 2240 | 1622 | Below average |
Two-bedroom stats, by rent category | ||||
Rent_Category | Count | Minimum | Average | Maximum |
---|---|---|---|---|
Above average | 28 | 1930 | 2309 | 2740 |
Below average | 52 | 1460 | 1713 | 1920 |
# Getting and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("openxlsx"))
install.packages("openxlsx")
if (!require("gtExtras"))
install.packages("gtExtras")
if (!require("leafpop"))
install.packages("leafpop")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("RColorBrewer"))
install.packages("RColorBrewer")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(openxlsx)
library(gtExtras)
library(readxl)
library(sf)
library(mapview)
library(leafpop)
library(RColorBrewer)
library(tidycensus)
# Reading data from:
# https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx
# Note that you are downloading the 2025 data. We have been working with 2024 data.
# The data frame should have 51,899 observations of 18 variables
download.file("https://www.huduser.gov/portal/datasets/fmr/fmr2025/fy2025_safmrs.xlsx", "rent.xlsx", mode = "wb")
FMR <- read_xlsx(path = "rent.xlsx", .name_repair = "universal")
# Making a list of Nashville-area ZIP codes
ZIPList <- c(
"37135",
"37215",
"37064",
"37060",
"37014",
"37122",
"37027",
"37046",
"37221",
"37153",
"37210",
"37202",
"37024",
"37218",
"37062",
"37179",
"37025",
"37206",
"37065",
"37214",
"37067",
"37246",
"37068",
"37167",
"37069",
"37189",
"37070",
"37204",
"37072",
"37208",
"37076",
"37212",
"37080",
"37216",
"37085",
"37020",
"37086",
"38476",
"37089",
"37160",
"37090",
"37174",
"37115",
"37180",
"37116",
"37201",
"37118",
"37203",
"37015",
"37205",
"37127",
"37207",
"37128",
"37209",
"37129",
"37211",
"37130",
"37213",
"37220",
"37037",
"37222",
"37217",
"37228",
"37219",
"37232",
"37013",
"37131",
"37224",
"37132",
"37229",
"37133",
"37236",
"37238",
"37240",
"37243",
"37138",
"38401",
"37143",
"37011",
"37149"
)
# Filtering for Nashville-area ZIP codes and
# selecting columns of interest
# FMR_Nash data frame should have 80 observations of six variables
FMR_Nash <- FMR %>%
filter(ZIP.Code %in% ZIPList) %>%
select(ZIP.Code, SAFMR.0BR, SAFMR.1BR, SAFMR.2BR, SAFMR.3BR, SAFMR.4BR) %>%
distinct()
# Renaming the columns
colnames(FMR_Nash) <- c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4")
# Averaging estimates
FMR_Nash <- FMR_Nash %>%
mutate(ZIP_Average = (Studio + BR1 + BR2 + BR3 + BR4) / 5)
# Sorting in descending order by ZIP_Average
FMR_Nash <- FMR_Nash %>%
arrange(desc(ZIP_Average))
Average_ZIP_Average <- mean(FMR_Nash$ZIP_Average)
# Categorizing by ZIP_Average
FMR_Nash <- FMR_Nash %>%
mutate(
Rent_Category = case_when(
ZIP_Average > Average_ZIP_Average ~ "Above average",
ZIP_Average == Average_ZIP_Average ~ "Average",
ZIP_Average < Average_ZIP_Average ~ "Below average",
.default = "Error"))
# Showing the data as a table
FMR_Nash_table <- gt(FMR_Nash) %>%
tab_header("Nashville FMR, by size and ZIP") %>%
cols_align(align = "left") %>%
gt_theme_538
FMR_Nash_table
# Grouping and summarizing
Summary_BR2 <- FMR_Nash %>%
group_by(Rent_Category) %>%
summarize(Count = n(),
Minimum = min(BR2),
Average = round(mean(BR2), 0),
Maximum = max(BR2))
# Making the table
Summary_BR2_table <- gt(Summary_BR2) %>%
tab_header("Two-bedroom stats, by rent category") %>%
cols_align(align = "left") %>%
gt_theme_538
# Showing the table
Summary_BR2_table
# Transmitting API key
census_api_key("2e2a0ce2c78a86d5656ad34469c6cd33e36076b9")
# Fetching the Census data
Census_Data <- get_acs(
geography = "zcta",
variables = c("DP04_0047", "DP04_0045"),
year = 2023,
survey = "acs5",
output = "wide",
geometry = FALSE
)
# Making better column names
Census_Data <- Census_Data %>%
rename(c("Rentals" = "DP04_0047E",
"Rentals_MOE" = "DP04_0047M",
"Households" = "DP04_0045E",
"Households_MOE" = "DP04_0045M"))
# Redownloading, unzipping and importing the ZIP code map file
download.file(
"https://www2.census.gov/geo/tiger/GENZ2020/shp/cb_2020_us_zcta520_500k.zip",
"ZCTAs2020.zip"
)
unzip("ZCTAs2020.zip")
ZCTAMap <- read_sf("cb_2020_us_zcta520_500k.shp")
# Merging the rent data and ZIP code map
FMR_Nash$ZIP <- as.character(FMR_Nash$ZIP)
FMR_Nash_Map <- left_join(FMR_Nash, ZCTAMap, by = c("ZIP" = "ZCTA5CE20"))
FMR_Nash_Map <- FMR_Nash_Map %>%
select(-c(AFFGEOID20, GEOID20, NAME20, LSAD20, ALAND20, AWATER20))
FMR_Nash_Map <- st_as_sf(FMR_Nash_Map)
# Mapping by average rent with "Blues" color scheme
ZIP_Map <- mapview(
FMR_Nash_Map,
zcol = "ZIP_Average",
col.regions = brewer.pal(9, "Blues"),
layer.name = "Average rent",
popup = popupTable(
FMR_Nash_Map,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4")
)
)
# Showing the map
ZIP_Map
# Merging FMR_RuCo_Map and Census_Data
FMR_Nash_Map <- left_join(FMR_Nash_Map, Census_Data, by = c("ZIP" = "GEOID"))
# Mapping by ZIP code
ZIP_Map <- mapview(
FMR_Nash_Map,
zcol = "ZIP_Average",
col.regions = brewer.pal(9, "Blues"),
layer.name = "Average rent",
popup = popupTable(
FMR_Nash_Map,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4",
"Rentals", "Rentals_MOE", "Households", "Households_MOE")
)
)
# Showing the map
ZIP_Map