library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.3
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'tibble' was built under R version 4.3.3
## Warning: package 'tidyr' was built under R version 4.3.3
## Warning: package 'readr' was built under R version 4.3.3
## Warning: package 'purrr' was built under R version 4.3.3
## Warning: package 'dplyr' was built under R version 4.3.3
## Warning: package 'stringr' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
## Warning: package 'lubridate' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(agricolae)
## Warning: package 'agricolae' was built under R version 4.3.3
library(readxl)
## Warning: package 'readxl' was built under R version 4.3.3
data_fumigasi<-read_xlsx("C:/Users/M S I/Downloads/data fumigasi .xlsx")
data_fumigasi
## # A tibble: 30 × 4
##    Lama_Fumigasi Dosis Ulangan Daya_Kecambah
##            <dbl> <dbl>   <dbl>         <dbl>
##  1             1     0       1            96
##  2             1    10       2            97
##  3             1    20       3            95
##  4             1    30       1            94
##  5             1    40       2            94
##  6             1     0       3            92
##  7             1    10       1            92
##  8             1    20       2            91
##  9             1    30       3            90
## 10             1    40       1            90
## # ℹ 20 more rows
data_fumigasi$Lama_Fumigasi <- as.factor(data_fumigasi$Lama_Fumigasi)
data_fumigasi$Ulangan <- as.factor(data_fumigasi$Ulangan)
data_fumigasi$Dosis <- as.factor(data_fumigasi$Dosis)
ANOVA_Fumigasi <- aov(Daya_Kecambah ~ Lama_Fumigasi + poly(Dosis, 3) + Lama_Fumigasi:poly(Dosis, 3), 
                       data = data_fumigasi)
summary.aov(ANOVA_Fumigasi)
##                              Df Sum Sq Mean Sq F value   Pr(>F)    
## Lama_Fumigasi                 1  76.80   76.80  23.678 7.29e-05 ***
## poly(Dosis, 3)                3 114.18   38.06  11.734 8.47e-05 ***
## Lama_Fumigasi:poly(Dosis, 3)  3  17.13    5.71   1.761    0.184    
## Residuals                    22  71.36    3.24                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
data_fumigasi$Dosis <- as.factor(data_fumigasi$Dosis) 
contrasts(data_fumigasi$Dosis) <- contr.poly(nlevels(data_fumigasi$Dosis))

AnovaFakRAL2 <- aov(Daya_Kecambah ~ Lama_Fumigasi + Dosis + Lama_Fumigasi:Dosis, 
                    data = data_fumigasi)
summary.aov(AnovaFakRAL2,split=list(Dosis=list("Linear"=1,"Kuadratik"=2,"Kubik"=3,"Kuartik"=4)))
##                                  Df Sum Sq Mean Sq F value   Pr(>F)    
## Lama_Fumigasi                     1  76.80   76.80  22.812 0.000115 ***
## Dosis                             4 117.80   29.45   8.748 0.000298 ***
##   Dosis: Linear                   1  96.27   96.27  28.594 3.11e-05 ***
##   Dosis: Kuadratik                1   5.76    5.76   1.711 0.205633    
##   Dosis: Kubik                    1  12.15   12.15   3.609 0.071988 .  
##   Dosis: Kuartik                  1   3.62    3.62   1.076 0.312046    
## Lama_Fumigasi:Dosis               4  17.53    4.38   1.302 0.303040    
##   Lama_Fumigasi:Dosis: Linear     1  15.00   15.00   4.455 0.047578 *  
##   Lama_Fumigasi:Dosis: Kuadratik  1   1.71    1.71   0.509 0.483733    
##   Lama_Fumigasi:Dosis: Kubik      1   0.42    0.42   0.124 0.728669    
##   Lama_Fumigasi:Dosis: Kuartik    1   0.40    0.40   0.120 0.733167    
## Residuals                        20  67.33    3.37                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1