B.count = B %>% count(checklist_id, check.year, check.year.f, PV_project, PV_install_year, PV_install_year.f)
B.count = B.count %>%
group_by(PV_project, PV_install_year.f, check.year.f, PV_install_year, check.year) %>%
summarise(no.check=sum(n))
## `summarise()` has grouped output by 'PV_project', 'PV_install_year.f',
## 'check.year.f', 'PV_install_year'. You can override using the `.groups`
## argument.
#names(B.count)
#B.count
count.FW = ggplot(B.count, aes(x=check.year.f, y=no.check))+
geom_jitter() +
theme(legend.position="none") +
theme(axis.text.x = element_text(angle = 90)) +
labs(x = "", title = "number of checklists over time by PV project with installation date") +
facet_wrap(~PV_project)
count.FW + geom_vline(aes(xintercept = PV_install_year.f),data=B.count)
ggplot(B.count, aes(x=check.year.f, y=no.check, color = PV_project))+
geom_jitter() +
theme(legend.position="none") +
theme(axis.text.x = element_text(angle = 90))
B$ntl = erd$ntl_mean
ntl.count = B %>% select(check.year.f, ntl, PV_install_year, PV_project) %>%
group_by(PV_install_year)
#names(ntl.count)
#ntl.count
ntl.count$PV_install_year.f = factor(ntl.count$PV_install_year)
ntl.plot = ggplot(ntl.count, aes(x=check.year.f, y=ntl))+
geom_jitter() +
theme(axis.text.x = element_text(angle = 90)) +
labs(x = "", title = "night time lights over time by PV project with installation date") +
facet_wrap(~PV_project)
ntl.plot + geom_vline(aes(xintercept = PV_install_year.f), data=ntl.count)
B$rivers = erd$astwbd_c2_pland
rivers = B %>% select(check.year.f, rivers, PV_install_year, PV_project) %>%
group_by(PV_install_year)
#names(rivers)
#rivers
rivers$PV_install_year.f = factor(rivers$PV_install_year)
rivers.plot = ggplot(rivers, aes(x=check.year.f, y=rivers))+
geom_jitter() +
theme(axis.text.x = element_text(angle = 90)) +
labs(x = "", title = "rivers over time by PV project with installation date") +
facet_wrap(~PV_project)
rivers.plot + geom_vline(aes(xintercept = PV_install_year.f), data=rivers)
B$lakes = erd$astwbd_c3_pland
lakes = B %>% select(check.year.f, lakes, PV_install_year, PV_project) %>%
group_by(PV_install_year)
#names(lakes)
#lakes
lakes$PV_install_year.f = factor(lakes$PV_install_year)
lakes.plot = ggplot(lakes, aes(x=check.year.f, y=lakes))+
geom_jitter() +
theme(axis.text.x = element_text(angle = 90)) +
labs(x = "", title = "lakes over time by PV project with installation date") +
facet_wrap(~PV_project)
lakes.plot + geom_vline(aes(xintercept = PV_install_year.f), data=lakes)
## 10. Greeness pre-post installation
B$evig = erd$evi_median
evi = B %>% select(check.year.f, evig, PV_install_year, PV_project) %>%
group_by(PV_install_year)
#names(evi)
#evi
evi$PV_install_year.f = factor(evi$PV_install_year)
evi.plot = ggplot(evi, aes(x=check.year.f, y=evig))+
geom_jitter() +
theme(axis.text.x = element_text(angle = 90)) +
labs(x = "", title = "greenness over time by PV project with installation date") +
facet_wrap(~PV_project)
evi.plot + geom_vline(aes(xintercept = PV_install_year.f), data=evi)
B$elev = erd$elevation_30m_median
elevn = B %>% select(check.year.f, elev, PV_install_year, PV_project) %>%
group_by(PV_install_year)
#names(elev)
#elev
elevn$PV_install_year.f = factor(elevn$PV_install_year)
elevn.plot = ggplot(elevn, aes(x=PV_project, y=elev))+
geom_boxplot() +
labs(x = "", title = "elevation by PV project") +
theme(axis.text.x = element_text(angle = 90))
elevn.plot