Operator <- factor(rep(1:3, each=4))
Jenis_Mesin <- factor(rep(1:4, times=3))
Respon <- c(109, 110, 108, 110,
110, 110, 111, 114,
116, 112, 114, 120,
110, 115, 109, 108,
112, 111, 109, 112,
114, 115, 119, 117)
data <- data.frame(Operator, Jenis_Mesin, Respon)
print(data)
## Operator Jenis_Mesin Respon
## 1 1 1 109
## 2 1 2 110
## 3 1 3 108
## 4 1 4 110
## 5 2 1 110
## 6 2 2 110
## 7 2 3 111
## 8 2 4 114
## 9 3 1 116
## 10 3 2 112
## 11 3 3 114
## 12 3 4 120
## 13 1 1 110
## 14 1 2 115
## 15 1 3 109
## 16 1 4 108
## 17 2 1 112
## 18 2 2 111
## 19 2 3 109
## 20 2 4 112
## 21 3 1 114
## 22 3 2 115
## 23 3 3 119
## 24 3 4 117
\[ Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk} \]
Keterangan:
\[
\begin{aligned}
& i = 1,2,3; \quad j = 1,2,3,4 \\
& Y_{ijk} = \text{Nilai pengamatan pada faktor A (Operator) taraf
ke-i faktor B (Jenis Mesin) taraf ke-j dan ulangan ke k.} \\
& \mu = \text{merupakan komponen aditif dari rataan} \\
& \alpha_i = \text{pengaruh utama faktor A (Operator)} \\
& \beta_j = \text{pengaruh utama faktor B (Jenis Mesin)} \\
& (\alpha\beta)_{ij} = \text{komponen interaksi dari faktor A
(Operator) dan faktor B (Jenis Mesin)} \\
& \varepsilon_{ijk} = \text{pengaruh acak yang menyebar Normal} \sim
N(0, \sigma^2)
\end{aligned}
\]
data$Operator <- as.factor(data$Operator)
data$Jenis_Mesin <- as.factor(data$Jenis_Mesin)
AnovaFakRAL <- aov(Respon ~ Operator * Jenis_Mesin, data=data)
summary(AnovaFakRAL)
## Df Sum Sq Mean Sq F value Pr(>F)
## Operator 2 160.33 80.17 21.143 0.000117 ***
## Jenis_Mesin 3 12.46 4.15 1.095 0.388753
## Operator:Jenis_Mesin 6 44.67 7.44 1.963 0.150681
## Residuals 12 45.50 3.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F_crit_operator <- qf(0.05, df1 = 2, df2 = 12, lower.tail = FALSE)
F_crit_mesin <- qf(0.05, df1 = 3, df2 = 12, lower.tail = FALSE)
F_crit_interaksi <- qf(0.05, df1 = 6, df2 = 12, lower.tail = FALSE)
F_crit_operator
## [1] 3.885294
F_crit_mesin
## [1] 3.490295
F_crit_interaksi
## [1] 2.99612
Untuk Operator didapatkan \(F_{\text{hitung}} = 21.143 > F_{\text{tabel}} =
3.885294\), Maka Tolak \(H_0\).
Terdapat cukup bukti untuk menyatakan bahwa terdapat perbedaan pengaruh
operator terhadap respon pada taraf nyata 5%.
Untuk jenis mesin didapatkan \(F_{\text{hitung}} = 1.095 < F_{\text{tabel}} =
3.490295\), Maka Tak Tolak \(H_0\).
Belum cukup bukti untuk menyatakan bahwa terdapat perbedaan pengaruh
jenis mesin terhadap respon pada taraf nyata 5%.
Untuk hubungan antara operator dan jenis mesin didapatkan \(F_{\text{hitung}} = 1.963 < F_{\text{tabel}} =
2.99612\), Maka Tak Tolak \(H_0\).
Belum cukup bukti untuk menyatakan bahwa terdapat perbedaan pengaruh
operator dan jenis mesin terhadap respon pada taraf nyata 5%
interaction.plot(data$Jenis_Mesin, data$Operator, data$Respon)
library(phia)
## Warning: package 'phia' was built under R version 4.4.2
## Loading required package: car
## Warning: package 'car' was built under R version 4.4.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.4.2
model <- lm(Respon ~ Operator * Jenis_Mesin, data = data)
interaksi <- interactionMeans(model)
plot(interaksi)
knitr::kable(TukeyHSD(AnovaFakRAL, conf.level =.95)$'Operator:Jenis_Mesin')
| diff | lwr | upr | p adj | |
|---|---|---|---|---|
| 2:1-1:1 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
| 3:1-1:1 | 5.5 | -2.230766 | 13.230766 | 0.2769269 |
| 1:2-1:1 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
| 2:2-1:1 | 1.0 | -6.730766 | 8.730766 | 0.9999870 |
| 3:2-1:1 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
| 1:3-1:1 | -1.0 | -8.730766 | 6.730766 | 0.9999870 |
| 2:3-1:1 | 0.5 | -7.230766 | 8.230766 | 1.0000000 |
| 3:3-1:1 | 7.0 | -0.730766 | 14.730766 | 0.0898750 |
| 1:4-1:1 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
| 2:4-1:1 | 3.5 | -4.230766 | 11.230766 | 0.7937754 |
| 3:4-1:1 | 9.0 | 1.269234 | 16.730766 | 0.0178460 |
| 3:1-2:1 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
| 1:2-2:1 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
| 2:2-2:1 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
| 3:2-2:1 | 2.5 | -5.230766 | 10.230766 | 0.9664165 |
| 1:3-2:1 | -2.5 | -10.230766 | 5.230766 | 0.9664165 |
| 2:3-2:1 | -1.0 | -8.730766 | 6.730766 | 0.9999870 |
| 3:3-2:1 | 5.5 | -2.230766 | 13.230766 | 0.2769269 |
| 1:4-2:1 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
| 2:4-2:1 | 2.0 | -5.730766 | 9.730766 | 0.9931505 |
| 3:4-2:1 | 7.5 | -0.230766 | 15.230766 | 0.0602463 |
| 1:2-3:1 | -2.5 | -10.230766 | 5.230766 | 0.9664165 |
| 2:2-3:1 | -4.5 | -12.230766 | 3.230766 | 0.5149555 |
| 3:2-3:1 | -1.5 | -9.230766 | 6.230766 | 0.9993833 |
| 1:3-3:1 | -6.5 | -14.230766 | 1.230766 | 0.1328994 |
| 2:3-3:1 | -5.0 | -12.730766 | 2.730766 | 0.3847296 |
| 3:3-3:1 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
| 1:4-3:1 | -6.0 | -13.730766 | 1.730766 | 0.1938021 |
| 2:4-3:1 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
| 3:4-3:1 | 3.5 | -4.230766 | 11.230766 | 0.7937754 |
| 2:2-1:2 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
| 3:2-1:2 | 1.0 | -6.730766 | 8.730766 | 0.9999870 |
| 1:3-1:2 | -4.0 | -11.730766 | 3.730766 | 0.6575431 |
| 2:3-1:2 | -2.5 | -10.230766 | 5.230766 | 0.9664165 |
| 3:3-1:2 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
| 1:4-1:2 | -3.5 | -11.230766 | 4.230766 | 0.7937754 |
| 2:4-1:2 | 0.5 | -7.230766 | 8.230766 | 1.0000000 |
| 3:4-1:2 | 6.0 | -1.730766 | 13.730766 | 0.1938021 |
| 3:2-2:2 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
| 1:3-2:2 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
| 2:3-2:2 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
| 3:3-2:2 | 6.0 | -1.730766 | 13.730766 | 0.1938021 |
| 1:4-2:2 | -1.5 | -9.230766 | 6.230766 | 0.9993833 |
| 2:4-2:2 | 2.5 | -5.230766 | 10.230766 | 0.9664165 |
| 3:4-2:2 | 8.0 | 0.269234 | 15.730766 | 0.0401932 |
| 1:3-3:2 | -5.0 | -12.730766 | 2.730766 | 0.3847296 |
| 2:3-3:2 | -3.5 | -11.230766 | 4.230766 | 0.7937754 |
| 3:3-3:2 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
| 1:4-3:2 | -4.5 | -12.230766 | 3.230766 | 0.5149555 |
| 2:4-3:2 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
| 3:4-3:2 | 5.0 | -2.730766 | 12.730766 | 0.3847296 |
| 2:3-1:3 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
| 3:3-1:3 | 8.0 | 0.269234 | 15.730766 | 0.0401932 |
| 1:4-1:3 | 0.5 | -7.230766 | 8.230766 | 1.0000000 |
| 2:4-1:3 | 4.5 | -3.230766 | 12.230766 | 0.5149555 |
| 3:4-1:3 | 10.0 | 2.269234 | 17.730766 | 0.0080049 |
| 3:3-2:3 | 6.5 | -1.230766 | 14.230766 | 0.1328994 |
| 1:4-2:3 | -1.0 | -8.730766 | 6.730766 | 0.9999870 |
| 2:4-2:3 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
| 3:4-2:3 | 8.5 | 0.769234 | 16.230766 | 0.0267714 |
| 1:4-3:3 | -7.5 | -15.230766 | 0.230766 | 0.0602463 |
| 2:4-3:3 | -3.5 | -11.230766 | 4.230766 | 0.7937754 |
| 3:4-3:3 | 2.0 | -5.730766 | 9.730766 | 0.9931505 |
| 2:4-1:4 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
| 3:4-1:4 | 9.5 | 1.769234 | 17.230766 | 0.0119280 |
| 3:4-2:4 | 5.5 | -2.230766 | 13.230766 | 0.2769269 |
library(emmeans)
## Warning: package 'emmeans' was built under R version 4.4.2
## Welcome to emmeans.
## Caution: You lose important information if you filter this package's results.
## See '? untidy'
marginal <- emmeans(model, ~ Operator:Jenis_Mesin)
library(multcomp)
## Warning: package 'multcomp' was built under R version 4.4.2
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 4.4.2
## Loading required package: survival
## Loading required package: TH.data
## Warning: package 'TH.data' was built under R version 4.4.2
## Loading required package: MASS
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
## geyser
library(multcompView)
## Warning: package 'multcompView' was built under R version 4.4.2
knitr::kable(cld(marginal,
alpha=0.05,
Letters=letters,
adjust="tukey"))
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
| Operator | Jenis_Mesin | emmean | SE | df | lower.CL | upper.CL | .group | |
|---|---|---|---|---|---|---|---|---|
| 7 | 1 | 3 | 108.5 | 1.376893 | 12 | 103.6607 | 113.3393 | a |
| 10 | 1 | 4 | 109.0 | 1.376893 | 12 | 104.1607 | 113.8393 | ab |
| 1 | 1 | 1 | 109.5 | 1.376893 | 12 | 104.6607 | 114.3393 | ab |
| 8 | 2 | 3 | 110.0 | 1.376893 | 12 | 105.1607 | 114.8393 | ab |
| 5 | 2 | 2 | 110.5 | 1.376893 | 12 | 105.6607 | 115.3393 | ab |
| 2 | 2 | 1 | 111.0 | 1.376893 | 12 | 106.1607 | 115.8393 | abc |
| 4 | 1 | 2 | 112.5 | 1.376893 | 12 | 107.6607 | 117.3393 | abc |
| 11 | 2 | 4 | 113.0 | 1.376893 | 12 | 108.1607 | 117.8393 | abc |
| 6 | 3 | 2 | 113.5 | 1.376893 | 12 | 108.6607 | 118.3393 | abc |
| 3 | 3 | 1 | 115.0 | 1.376893 | 12 | 110.1607 | 119.8393 | abc |
| 9 | 3 | 3 | 116.5 | 1.376893 | 12 | 111.6607 | 121.3393 | bc |
| 12 | 3 | 4 | 118.5 | 1.376893 | 12 | 113.6607 | 123.3393 | c |
.group, semakin tinggi
nilai rerata pengamatan.contrasts(Jenis_Mesin) <- contr.poly(4)
AnovaFakRAL2<-aov(Respon~Operator+Jenis_Mesin+Operator:Jenis_Mesin,data=data)
summary.aov(AnovaFakRAL2,split=list(Jenis_Mesin=list("Linear"=1,"Kuadratik"=2,"Kubik"=3,"Kuartik"=4)))
## Df Sum Sq Mean Sq F value Pr(>F)
## Operator 2 160.33 80.17 21.143 0.000117 ***
## Jenis_Mesin 3 12.46 4.15 1.095 0.388753
## Jenis_Mesin: Linear 1 0.13 0.13 0.033 0.858952
## Jenis_Mesin: Kuadratik 1 4.00 4.00 1.055 0.324630
## Jenis_Mesin: Kubik 1 8.33 8.33 2.198 0.163987
## Jenis_Mesin: Kuartik 1
## Operator:Jenis_Mesin 6 44.67 7.44 1.963 0.150681
## Operator:Jenis_Mesin: Linear 2 34.33 17.17 4.527 0.034274 *
## Operator:Jenis_Mesin: Kuadratik 2 2.17 1.08 0.286 0.756449
## Operator:Jenis_Mesin: Kubik 2 8.17 4.08 1.077 0.371399
## Operator:Jenis_Mesin: Kuartik 0 0.00
## Residuals 12 45.50 3.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(readxl)
## Warning: package 'readxl' was built under R version 4.4.2
data_Nitrogen <- read_xlsx("C:/Users/USER/OneDrive/Documents/data_Nitrogen.xlsx")
data_Nitrogen
## # A tibble: 45 × 4
## Varietas Nitrogen Ulangan Hasil
## <chr> <chr> <dbl> <dbl>
## 1 V1 N1 1 9
## 2 V1 N1 2 9
## 3 V1 N1 3 10
## 4 V1 N2 1 12
## 5 V1 N2 2 13
## 6 V1 N2 3 12
## 7 V1 N3 1 13
## 8 V1 N3 2 15
## 9 V1 N3 3 14
## 10 V1 N4 1 18
## # ℹ 35 more rows
\[ Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk} \]
\[ \begin{aligned} & i = 1,2,3; \quad j = 1,2,3,4,5 \\ & Y_{ijk} = \text{Nilai pengamatan pada faktor A (Varietas) taraf ke-i faktor B (Nitrogen) taraf ke-j dan ulangan ke k.} \\ & \mu = \text{merupakan komponen aditif dari rataan} \\ & \alpha_i = \text{pengaruh utama faktor A (Varietas)} \\ & \beta_j = \text{pengaruh utama faktor B (Nitrogen)} \\ & (\alpha\beta)_{ij} = \text{komponen interaksi dari faktor A (Varietas) dan faktor B (Nitrogen).} \\ & \varepsilon_{ijk} = \text{pengaruh acak yang menyebar Normal} \sim N(0, \sigma^2) \end{aligned} \]
\[ H_0 : \alpha_1 = \alpha_2 = \dots = \alpha_a = 0 \quad \text{(Faktor A (Varietas) tidak berpengaruh terhadap hasil)} \] \[ H_1 : \text{Minimal ada satu } i \text{ di mana } \alpha_i \neq 0 \]
\[ H_0 : \beta_1 = \beta_2 = \dots = \beta_b = 0 \quad \text{(Faktor B (Nitrogen) tidak berpengaruh terhadap hasil)} \] \[ H_1 : \text{Minimal ada satu } j \text{ di mana } \beta_j \neq 0 \]
\[ H_0 : (\alpha\beta)_{11} = (\alpha\beta)_{12} = \dots = (\alpha\beta)_{ab} = 0 \] \[ \text{(Interaksi dari faktor A (Varietas) dengan faktor B (Nitrogen) tidak berpengaruh terhadap hasil)} \] \[ H_1 : \text{Minimal ada sepasang } (i,j) \text{ di mana } (\alpha\beta)_{ij} \neq 0 \]
data_Nitrogen$Varietas <- as.factor(data_Nitrogen$Varietas)
data_Nitrogen$Nitrogen <- as.factor(data_Nitrogen$Nitrogen)
model <- aov(Hasil ~ Varietas * Nitrogen, data = data_Nitrogen)
summary(model)
## Df Sum Sq Mean Sq F value Pr(>F)
## Varietas 2 28.93 14.47 2.868 0.0725 .
## Nitrogen 4 279.02 69.76 13.828 1.67e-06 ***
## Varietas:Nitrogen 8 95.51 11.94 2.367 0.0417 *
## Residuals 30 151.33 5.04
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F_critical_V <- qf(0.05, df1 = 2, df2 = 30, lower.tail = FALSE)
F_critical_N <- qf(0.05, df1 = 4, df2 = 30, lower.tail = FALSE)
F_critical_interaksi <- qf(0.05, df1 = 8, df2 = 30, lower.tail = FALSE)
F_critical_V
## [1] 3.31583
F_critical_N
## [1] 2.689628
F_critical_interaksi
## [1] 2.266163
Untuk Varietas didapatkan \(F_{\text{hitung}} = 2.868 < F_{\text{tabel}} =
3.31583\), Maka Tak Tolak \(H_0\).
Belum cukup bukti untuk menyatakan bahwa terdapat perbedaan pengaruh
Varietas terhadap hasil pada taraf nyata 5%.
Untuk Nitrogen didapatkan \(F_{\text{hitung}} = 13.828 > F_{\text{tabel}} =
2.689628\), Maka Tolak \(H_0\).
Terdapat cukup bukti untuk menyatakan bahwa terdapat perbedaan pengaruh
Nitrogen terhadap hasil pada taraf nyata 5%.
Untuk hubungan antara Varietas dan Nitrogen didapatkan \(F_{\text{hitung}} = 2.367 > F_{\text{tabel}} =
2.266163\), Maka Tolak \(H_0\).
Terdapat cukup bukti untuk menyatakan bahwa terdapat perbedaan pengaruh
Varietas dan Nitrogen terhadap hasil pada taraf nyata 5%.
interaction.plot(data_Nitrogen$Nitrogen, data_Nitrogen$Varietas, data_Nitrogen$Hasil)
## Cara 2
library(phia)
model <- lm(Hasil ~ Varietas * Nitrogen, data = data_Nitrogen)
interaksi <- interactionMeans(model)
plot(interaksi)
# Uji Lanjut ## Uji Tukey
model <- aov(Hasil ~ Varietas * Nitrogen, data = data_Nitrogen)
library(knitr)
## Warning: package 'knitr' was built under R version 4.4.2
knitr::kable(TukeyHSD(model, conf.level = 0.95)$`Varietas:Nitrogen`)
| diff | lwr | upr | p adj | |
|---|---|---|---|---|
| V2:N1-V1:N1 | -1.0000000 | -7.7577108 | 5.7577108 | 0.9999995 |
| V3:N1-V1:N1 | -0.6666667 | -7.4243774 | 6.0910441 | 1.0000000 |
| V1:N2-V1:N1 | 3.0000000 | -3.7577108 | 9.7577108 | 0.9362861 |
| V2:N2-V1:N1 | 0.3333333 | -6.4243774 | 7.0910441 | 1.0000000 |
| V3:N2-V1:N1 | -0.3333333 | -7.0910441 | 6.4243774 | 1.0000000 |
| V1:N3-V1:N1 | 4.6666667 | -2.0910441 | 11.4243774 | 0.4412726 |
| V2:N3-V1:N1 | 3.6666667 | -3.0910441 | 10.4243774 | 0.7834757 |
| V3:N3-V1:N1 | 4.3333333 | -2.4243774 | 11.0910441 | 0.5568214 |
| V1:N4-V1:N1 | 10.0000000 | 3.2422892 | 16.7577108 | 0.0005252 |
| V2:N4-V1:N1 | 4.0000000 | -2.7577108 | 10.7577108 | 0.6746013 |
| V3:N4-V1:N1 | 5.0000000 | -1.7577108 | 11.7577108 | 0.3367239 |
| V1:N5-V1:N1 | 3.0000000 | -3.7577108 | 9.7577108 | 0.9362861 |
| V2:N5-V1:N1 | 7.3333333 | 0.5756226 | 14.0910441 | 0.0236863 |
| V3:N5-V1:N1 | 2.6666667 | -4.0910441 | 9.4243774 | 0.9739242 |
| V3:N1-V2:N1 | 0.3333333 | -6.4243774 | 7.0910441 | 1.0000000 |
| V1:N2-V2:N1 | 4.0000000 | -2.7577108 | 10.7577108 | 0.6746013 |
| V2:N2-V2:N1 | 1.3333333 | -5.4243774 | 8.0910441 | 0.9999809 |
| V3:N2-V2:N1 | 0.6666667 | -6.0910441 | 7.4243774 | 1.0000000 |
| V1:N3-V2:N1 | 5.6666667 | -1.0910441 | 12.4243774 | 0.1775695 |
| V2:N3-V2:N1 | 4.6666667 | -2.0910441 | 11.4243774 | 0.4412726 |
| V3:N3-V2:N1 | 5.3333333 | -1.4243774 | 12.0910441 | 0.2482866 |
| V1:N4-V2:N1 | 11.0000000 | 4.2422892 | 17.7577108 | 0.0001193 |
| V2:N4-V2:N1 | 5.0000000 | -1.7577108 | 11.7577108 | 0.3367239 |
| V3:N4-V2:N1 | 6.0000000 | -0.7577108 | 12.7577108 | 0.1236267 |
| V1:N5-V2:N1 | 4.0000000 | -2.7577108 | 10.7577108 | 0.6746013 |
| V2:N5-V2:N1 | 8.3333333 | 1.5756226 | 15.0910441 | 0.0059532 |
| V3:N5-V2:N1 | 3.6666667 | -3.0910441 | 10.4243774 | 0.7834757 |
| V1:N2-V3:N1 | 3.6666667 | -3.0910441 | 10.4243774 | 0.7834757 |
| V2:N2-V3:N1 | 1.0000000 | -5.7577108 | 7.7577108 | 0.9999995 |
| V3:N2-V3:N1 | 0.3333333 | -6.4243774 | 7.0910441 | 1.0000000 |
| V1:N3-V3:N1 | 5.3333333 | -1.4243774 | 12.0910441 | 0.2482866 |
| V2:N3-V3:N1 | 4.3333333 | -2.4243774 | 11.0910441 | 0.5568214 |
| V3:N3-V3:N1 | 5.0000000 | -1.7577108 | 11.7577108 | 0.3367239 |
| V1:N4-V3:N1 | 10.6666667 | 3.9089559 | 17.4243774 | 0.0001955 |
| V2:N4-V3:N1 | 4.6666667 | -2.0910441 | 11.4243774 | 0.4412726 |
| V3:N4-V3:N1 | 5.6666667 | -1.0910441 | 12.4243774 | 0.1775695 |
| V1:N5-V3:N1 | 3.6666667 | -3.0910441 | 10.4243774 | 0.7834757 |
| V2:N5-V3:N1 | 8.0000000 | 1.2422892 | 14.7577108 | 0.0095212 |
| V3:N5-V3:N1 | 3.3333333 | -3.4243774 | 10.0910441 | 0.8728471 |
| V2:N2-V1:N2 | -2.6666667 | -9.4243774 | 4.0910441 | 0.9739242 |
| V3:N2-V1:N2 | -3.3333333 | -10.0910441 | 3.4243774 | 0.8728471 |
| V1:N3-V1:N2 | 1.6666667 | -5.0910441 | 8.4243774 | 0.9997401 |
| V2:N3-V1:N2 | 0.6666667 | -6.0910441 | 7.4243774 | 1.0000000 |
| V3:N3-V1:N2 | 1.3333333 | -5.4243774 | 8.0910441 | 0.9999809 |
| V1:N4-V1:N2 | 7.0000000 | 0.2422892 | 13.7577108 | 0.0367025 |
| V2:N4-V1:N2 | 1.0000000 | -5.7577108 | 7.7577108 | 0.9999995 |
| V3:N4-V1:N2 | 2.0000000 | -4.7577108 | 8.7577108 | 0.9981586 |
| V1:N5-V1:N2 | 0.0000000 | -6.7577108 | 6.7577108 | 1.0000000 |
| V2:N5-V1:N2 | 4.3333333 | -2.4243774 | 11.0910441 | 0.5568214 |
| V3:N5-V1:N2 | -0.3333333 | -7.0910441 | 6.4243774 | 1.0000000 |
| V3:N2-V2:N2 | -0.6666667 | -7.4243774 | 6.0910441 | 1.0000000 |
| V1:N3-V2:N2 | 4.3333333 | -2.4243774 | 11.0910441 | 0.5568214 |
| V2:N3-V2:N2 | 3.3333333 | -3.4243774 | 10.0910441 | 0.8728471 |
| V3:N3-V2:N2 | 4.0000000 | -2.7577108 | 10.7577108 | 0.6746013 |
| V1:N4-V2:N2 | 9.6666667 | 2.9089559 | 16.4243774 | 0.0008593 |
| V2:N4-V2:N2 | 3.6666667 | -3.0910441 | 10.4243774 | 0.7834757 |
| V3:N4-V2:N2 | 4.6666667 | -2.0910441 | 11.4243774 | 0.4412726 |
| V1:N5-V2:N2 | 2.6666667 | -4.0910441 | 9.4243774 | 0.9739242 |
| V2:N5-V2:N2 | 7.0000000 | 0.2422892 | 13.7577108 | 0.0367025 |
| V3:N5-V2:N2 | 2.3333333 | -4.4243774 | 9.0910441 | 0.9917781 |
| V1:N3-V3:N2 | 5.0000000 | -1.7577108 | 11.7577108 | 0.3367239 |
| V2:N3-V3:N2 | 4.0000000 | -2.7577108 | 10.7577108 | 0.6746013 |
| V3:N3-V3:N2 | 4.6666667 | -2.0910441 | 11.4243774 | 0.4412726 |
| V1:N4-V3:N2 | 10.3333333 | 3.5756226 | 17.0910441 | 0.0003206 |
| V2:N4-V3:N2 | 4.3333333 | -2.4243774 | 11.0910441 | 0.5568214 |
| V3:N4-V3:N2 | 5.3333333 | -1.4243774 | 12.0910441 | 0.2482866 |
| V1:N5-V3:N2 | 3.3333333 | -3.4243774 | 10.0910441 | 0.8728471 |
| V2:N5-V3:N2 | 7.6666667 | 0.9089559 | 14.4243774 | 0.0150962 |
| V3:N5-V3:N2 | 3.0000000 | -3.7577108 | 9.7577108 | 0.9362861 |
| V2:N3-V1:N3 | -1.0000000 | -7.7577108 | 5.7577108 | 0.9999995 |
| V3:N3-V1:N3 | -0.3333333 | -7.0910441 | 6.4243774 | 1.0000000 |
| V1:N4-V1:N3 | 5.3333333 | -1.4243774 | 12.0910441 | 0.2482866 |
| V2:N4-V1:N3 | -0.6666667 | -7.4243774 | 6.0910441 | 1.0000000 |
| V3:N4-V1:N3 | 0.3333333 | -6.4243774 | 7.0910441 | 1.0000000 |
| V1:N5-V1:N3 | -1.6666667 | -8.4243774 | 5.0910441 | 0.9997401 |
| V2:N5-V1:N3 | 2.6666667 | -4.0910441 | 9.4243774 | 0.9739242 |
| V3:N5-V1:N3 | -2.0000000 | -8.7577108 | 4.7577108 | 0.9981586 |
| V3:N3-V2:N3 | 0.6666667 | -6.0910441 | 7.4243774 | 1.0000000 |
| V1:N4-V2:N3 | 6.3333333 | -0.4243774 | 13.0910441 | 0.0840784 |
| V2:N4-V2:N3 | 0.3333333 | -6.4243774 | 7.0910441 | 1.0000000 |
| V3:N4-V2:N3 | 1.3333333 | -5.4243774 | 8.0910441 | 0.9999809 |
| V1:N5-V2:N3 | -0.6666667 | -7.4243774 | 6.0910441 | 1.0000000 |
| V2:N5-V2:N3 | 3.6666667 | -3.0910441 | 10.4243774 | 0.7834757 |
| V3:N5-V2:N3 | -1.0000000 | -7.7577108 | 5.7577108 | 0.9999995 |
| V1:N4-V3:N3 | 5.6666667 | -1.0910441 | 12.4243774 | 0.1775695 |
| V2:N4-V3:N3 | -0.3333333 | -7.0910441 | 6.4243774 | 1.0000000 |
| V3:N4-V3:N3 | 0.6666667 | -6.0910441 | 7.4243774 | 1.0000000 |
| V1:N5-V3:N3 | -1.3333333 | -8.0910441 | 5.4243774 | 0.9999809 |
| V2:N5-V3:N3 | 3.0000000 | -3.7577108 | 9.7577108 | 0.9362861 |
| V3:N5-V3:N3 | -1.6666667 | -8.4243774 | 5.0910441 | 0.9997401 |
| V2:N4-V1:N4 | -6.0000000 | -12.7577108 | 0.7577108 | 0.1236267 |
| V3:N4-V1:N4 | -5.0000000 | -11.7577108 | 1.7577108 | 0.3367239 |
| V1:N5-V1:N4 | -7.0000000 | -13.7577108 | -0.2422892 | 0.0367025 |
| V2:N5-V1:N4 | -2.6666667 | -9.4243774 | 4.0910441 | 0.9739242 |
| V3:N5-V1:N4 | -7.3333333 | -14.0910441 | -0.5756226 | 0.0236863 |
| V3:N4-V2:N4 | 1.0000000 | -5.7577108 | 7.7577108 | 0.9999995 |
| V1:N5-V2:N4 | -1.0000000 | -7.7577108 | 5.7577108 | 0.9999995 |
| V2:N5-V2:N4 | 3.3333333 | -3.4243774 | 10.0910441 | 0.8728471 |
| V3:N5-V2:N4 | -1.3333333 | -8.0910441 | 5.4243774 | 0.9999809 |
| V1:N5-V3:N4 | -2.0000000 | -8.7577108 | 4.7577108 | 0.9981586 |
| V2:N5-V3:N4 | 2.3333333 | -4.4243774 | 9.0910441 | 0.9917781 |
| V3:N5-V3:N4 | -2.3333333 | -9.0910441 | 4.4243774 | 0.9917781 |
| V2:N5-V1:N5 | 4.3333333 | -2.4243774 | 11.0910441 | 0.5568214 |
| V3:N5-V1:N5 | -0.3333333 | -7.0910441 | 6.4243774 | 1.0000000 |
| V3:N5-V2:N5 | -4.6666667 | -11.4243774 | 2.0910441 | 0.4412726 |
library(emmeans)
marginal <- emmeans(model, ~ Varietas:Nitrogen)
library(multcomp)
knitr::kable(cld(marginal,
alpha=0.05,
Letters=letters,
adjust="tukey"))
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
| Varietas | Nitrogen | emmean | SE | df | lower.CL | upper.CL | .group | |
|---|---|---|---|---|---|---|---|---|
| 2 | V2 | N1 | 8.333333 | 1.29672 | 30 | 4.210357 | 12.45631 | a |
| 3 | V3 | N1 | 8.666667 | 1.29672 | 30 | 4.543690 | 12.78964 | a |
| 6 | V3 | N2 | 9.000000 | 1.29672 | 30 | 4.877024 | 13.12298 | a |
| 1 | V1 | N1 | 9.333333 | 1.29672 | 30 | 5.210357 | 13.45631 | a |
| 5 | V2 | N2 | 9.666667 | 1.29672 | 30 | 5.543690 | 13.78964 | a |
| 15 | V3 | N5 | 12.000000 | 1.29672 | 30 | 7.877024 | 16.12298 | ab |
| 13 | V1 | N5 | 12.333333 | 1.29672 | 30 | 8.210357 | 16.45631 | ab |
| 4 | V1 | N2 | 12.333333 | 1.29672 | 30 | 8.210357 | 16.45631 | ab |
| 8 | V2 | N3 | 13.000000 | 1.29672 | 30 | 8.877024 | 17.12298 | abc |
| 11 | V2 | N4 | 13.333333 | 1.29672 | 30 | 9.210357 | 17.45631 | abc |
| 9 | V3 | N3 | 13.666667 | 1.29672 | 30 | 9.543690 | 17.78964 | abc |
| 7 | V1 | N3 | 14.000000 | 1.29672 | 30 | 9.877024 | 18.12298 | abc |
| 12 | V3 | N4 | 14.333333 | 1.29672 | 30 | 10.210357 | 18.45631 | abc |
| 14 | V2 | N5 | 16.666667 | 1.29672 | 30 | 12.543690 | 20.78964 | bc |
| 10 | V1 | N4 | 19.333333 | 1.29672 | 30 | 15.210357 | 23.45631 | c |
contrasts(data_Nitrogen$Nitrogen) <- contr.poly(5)
AnovaFakRAL2 <- aov(Hasil ~ Varietas + Nitrogen + Varietas:Nitrogen, data = data_Nitrogen)
summary.aov(AnovaFakRAL2, split = list(Nitrogen = list("Linear" = 1,
"Kuadratik" = 2,
"Kubik" = 3,
"Kuartik" = 4)))
## Df Sum Sq Mean Sq F value Pr(>F)
## Varietas 2 28.93 14.47 2.868 0.07249 .
## Nitrogen 4 279.02 69.76 13.828 1.67e-06 ***
## Nitrogen: Linear 1 205.51 205.51 40.740 4.81e-07 ***
## Nitrogen: Kuadratik 1 43.46 43.46 8.615 0.00634 **
## Nitrogen: Kubik 1 30.04 30.04 5.956 0.02079 *
## Nitrogen: Kuartik 1 0.01 0.01 0.001 0.97193
## Varietas:Nitrogen 8 95.51 11.94 2.367 0.04168 *
## Varietas:Nitrogen: Linear 2 12.42 6.21 1.231 0.30625
## Varietas:Nitrogen: Kuadratik 2 32.59 16.29 3.230 0.05365 .
## Varietas:Nitrogen: Kubik 2 22.69 11.34 2.249 0.12301
## Varietas:Nitrogen: Kuartik 2 27.81 13.91 2.757 0.07960 .
## Residuals 30 151.33 5.04
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Faktor Varietas memiliki nilai \(F =
2.868\) dengan p-value = \(0.07249\).
Karena \(p\text{-value} > 0.05\),
maka tidak cukup bukti untuk menyatakan bahwa Varietas berpengaruh
signifikan terhadap hasil.
Faktor Nitrogen memiliki nilai \(F =
13.828\) dengan p-value = \(1.67 \times
10^{-6} \ (***)\) yang signifikan pada taraf 5%.
Ini menunjukkan bahwa Nitrogen berpengaruh signifikan terhadap
hasil.
Polinomial signifikan hingga orde kubik, tetapi tidak untuk orde kuartik.
Interaksi Varietas \(\times\) Nitrogen memiliki nilai \(F = 2.367\) dengan p-value = \(0.04168 \ (*)\), yang menunjukkan bahwa terdapat pengaruh interaksi yang signifikan.Ini menunjukkan bahwa interaksi lebih terlihat pada model kuadratik, meskipun masih mendekati batas signifikansi.