Caso práctico. Crear datos inventados con R de 15 hombres y 15
mujeres
# Fijar la semilla para reproducibilidad
set.seed(123)
# Crear identificadores únicos
ID <- 1:30
# Generar 15 "M" (hombres) y 15 "F" (mujeres)
Genero <- rep(c("M", "F"), each = 15)
# Generar edades entre 18 y 60 años
Edad <- sample(18:60, 30, replace = TRUE)
# Asignar aleatoriamente un tratamiento (A o B)
Tratamiento <- sample(c("A", "B"), 30, replace = TRUE)
# Generar peso en kg (Hombres: 60-100, Mujeres: 50-90)
Peso <- ifelse(Genero == "M", runif(15, 60, 100), runif(15, 50, 90))
# Generar estatura en cm (Hombres: 160-190, Mujeres: 150-175)
Estatura <- ifelse(Genero == "M", runif(15, 160, 190), runif(15, 150, 175))
# Crear el data frame
datos <- data.frame(ID, Edad, Genero, Tratamiento, Peso, Estatura)
# Mostrar los primeros registros
Resultados A
head(datos)
ID Edad Genero Tratamiento Peso Estatura 1 1 48 M B 85.16885 169.9847
2 2 32 M B 88.40730 174.6584 3 3 31 M A 60.02499 188.6342 4 4 20 M A
79.01266 174.4871 5 5 59 M A 68.80476 186.7105 6 6 60 M A 75.19266
187.4331
Resultados C.Crear variable IMC
datos$IMC <- datos$Peso / ( (datos$Estatura / 100) ^ 2 )
1 |
48 |
M |
B |
85.16885 |
169.9847 |
29.47549 |
2 |
32 |
M |
B |
88.40730 |
174.6584 |
28.98072 |
3 |
31 |
M |
A |
60.02499 |
188.6342 |
16.86907 |
4 |
20 |
M |
A |
79.01266 |
174.4871 |
25.95196 |
5 |
59 |
M |
A |
68.80476 |
186.7105 |
19.73699 |
6 |
60 |
M |
A |
75.19266 |
187.4331 |
21.40340 |
7 |
54 |
M |
B |
84.51084 |
178.2620 |
26.59467 |
8 |
31 |
M |
A |
74.07192 |
172.3207 |
24.94472 |
9 |
42 |
M |
A |
64.44542 |
164.4128 |
23.84079 |
10 |
43 |
M |
B |
69.74478 |
188.0590 |
19.72075 |
11 |
44 |
M |
A |
86.72222 |
169.0369 |
30.35062 |
12 |
22 |
M |
A |
76.70587 |
161.8216 |
29.29244 |
13 |
44 |
M |
A |
91.52783 |
188.4318 |
25.77773 |
14 |
45 |
M |
A |
64.11459 |
181.6179 |
19.43746 |
15 |
26 |
M |
B |
77.39571 |
164.2688 |
28.68181 |
16 |
46 |
F |
B |
89.39828 |
163.7321 |
33.34736 |
17 |
52 |
F |
A |
85.72204 |
173.8523 |
28.36167 |
18 |
25 |
F |
B |
85.45876 |
164.6371 |
31.52835 |
19 |
43 |
F |
A |
57.00211 |
160.1128 |
22.23510 |
20 |
24 |
F |
A |
55.22783 |
166.1973 |
19.99447 |
21 |
59 |
F |
B |
76.12408 |
157.9955 |
30.49527 |
22 |
26 |
F |
B |
63.74066 |
157.6930 |
25.63254 |
23 |
36 |
F |
A |
76.27033 |
155.4942 |
31.54476 |
24 |
53 |
F |
A |
62.81493 |
159.2372 |
24.77272 |
25 |
31 |
F |
B |
57.50764 |
174.6055 |
18.86296 |
26 |
34 |
F |
A |
81.29177 |
153.8551 |
34.34180 |
27 |
60 |
F |
A |
53.74380 |
152.2761 |
23.17741 |
28 |
56 |
F |
A |
68.67116 |
153.5477 |
29.12647 |
29 |
29 |
F |
A |
70.46022 |
167.2502 |
25.18899 |
30 |
32 |
F |
B |
73.99956 |
165.4814 |
27.02282 |
Resultados D. Crear dos ficheros independientes para hombres y
mujeres
datos_m<- subset(datos, Genero == "M")
datos_m<- subset(datos, Genero == "F")
kable(datos_m)
kable(datos_f)
1 |
48 |
M |
B |
85.16885 |
169.9847 |
29.47549 |
2 |
32 |
M |
B |
88.40730 |
174.6584 |
28.98072 |
3 |
31 |
M |
A |
60.02499 |
188.6342 |
16.86907 |
4 |
20 |
M |
A |
79.01266 |
174.4871 |
25.95196 |
5 |
59 |
M |
A |
68.80476 |
186.7105 |
19.73699 |
6 |
60 |
M |
A |
75.19266 |
187.4331 |
21.40340 |
7 |
54 |
M |
B |
84.51084 |
178.2620 |
26.59467 |
8 |
31 |
M |
A |
74.07192 |
172.3207 |
24.94472 |
9 |
42 |
M |
A |
64.44542 |
164.4128 |
23.84079 |
10 |
43 |
M |
B |
69.74478 |
188.0590 |
19.72075 |
11 |
44 |
M |
A |
86.72222 |
169.0369 |
30.35062 |
12 |
22 |
M |
A |
76.70587 |
161.8216 |
29.29244 |
13 |
44 |
M |
A |
91.52783 |
188.4318 |
25.77773 |
14 |
45 |
M |
A |
64.11459 |
181.6179 |
19.43746 |
15 |
26 |
M |
B |
77.39571 |
164.2688 |
28.68181 |
16 |
16 |
46 |
F |
B |
89.39828 |
163.7321 |
33.34736 |
17 |
17 |
52 |
F |
A |
85.72204 |
173.8523 |
28.36167 |
18 |
18 |
25 |
F |
B |
85.45876 |
164.6371 |
31.52835 |
19 |
19 |
43 |
F |
A |
57.00211 |
160.1128 |
22.23510 |
20 |
20 |
24 |
F |
A |
55.22783 |
166.1973 |
19.99447 |
21 |
21 |
59 |
F |
B |
76.12408 |
157.9955 |
30.49527 |
22 |
22 |
26 |
F |
B |
63.74066 |
157.6930 |
25.63254 |
23 |
23 |
36 |
F |
A |
76.27033 |
155.4942 |
31.54476 |
24 |
24 |
53 |
F |
A |
62.81493 |
159.2372 |
24.77272 |
25 |
25 |
31 |
F |
B |
57.50764 |
174.6055 |
18.86296 |
26 |
26 |
34 |
F |
A |
81.29177 |
153.8551 |
34.34180 |
27 |
27 |
60 |
F |
A |
53.74380 |
152.2761 |
23.17741 |
28 |
28 |
56 |
F |
A |
68.67116 |
153.5477 |
29.12647 |
29 |
29 |
29 |
F |
A |
70.46022 |
167.2502 |
25.18899 |
30 |
30 |
32 |
F |
B |
73.99956 |
165.4814 |
27.02282 |
Ejercicio E. Fusionar dos conjuntos de datos (hombres y
mujeres)
fusion<- rbind(datos_m, datos_f)
kable(fusion)
1 |
48 |
M |
B |
85.16885 |
169.9847 |
29.47549 |
2 |
32 |
M |
B |
88.40730 |
174.6584 |
28.98072 |
3 |
31 |
M |
A |
60.02499 |
188.6342 |
16.86907 |
4 |
20 |
M |
A |
79.01266 |
174.4871 |
25.95196 |
5 |
59 |
M |
A |
68.80476 |
186.7105 |
19.73699 |
6 |
60 |
M |
A |
75.19266 |
187.4331 |
21.40340 |
7 |
54 |
M |
B |
84.51084 |
178.2620 |
26.59467 |
8 |
31 |
M |
A |
74.07192 |
172.3207 |
24.94472 |
9 |
42 |
M |
A |
64.44542 |
164.4128 |
23.84079 |
10 |
43 |
M |
B |
69.74478 |
188.0590 |
19.72075 |
11 |
44 |
M |
A |
86.72222 |
169.0369 |
30.35062 |
12 |
22 |
M |
A |
76.70587 |
161.8216 |
29.29244 |
13 |
44 |
M |
A |
91.52783 |
188.4318 |
25.77773 |
14 |
45 |
M |
A |
64.11459 |
181.6179 |
19.43746 |
15 |
26 |
M |
B |
77.39571 |
164.2688 |
28.68181 |
16 |
46 |
F |
B |
89.39828 |
163.7321 |
33.34736 |
17 |
52 |
F |
A |
85.72204 |
173.8523 |
28.36167 |
18 |
25 |
F |
B |
85.45876 |
164.6371 |
31.52835 |
19 |
43 |
F |
A |
57.00211 |
160.1128 |
22.23510 |
20 |
24 |
F |
A |
55.22783 |
166.1973 |
19.99447 |
21 |
59 |
F |
B |
76.12408 |
157.9955 |
30.49527 |
22 |
26 |
F |
B |
63.74066 |
157.6930 |
25.63254 |
23 |
36 |
F |
A |
76.27033 |
155.4942 |
31.54476 |
24 |
53 |
F |
A |
62.81493 |
159.2372 |
24.77272 |
25 |
31 |
F |
B |
57.50764 |
174.6055 |
18.86296 |
26 |
34 |
F |
A |
81.29177 |
153.8551 |
34.34180 |
27 |
60 |
F |
A |
53.74380 |
152.2761 |
23.17741 |
28 |
56 |
F |
A |
68.67116 |
153.5477 |
29.12647 |
29 |
29 |
F |
A |
70.46022 |
167.2502 |
25.18899 |
30 |
32 |
F |
B |
73.99956 |
165.4814 |
27.02282 |