Load necessary libraries and datasets
library(dplyr)
library(tidyverse)
pacman::p_load(nycflights13)
#View(flights) # this View() function opens lets you directly view the whole dataset
#glimpse(flights) # this glimpse() function provides a quick overview of the dataset
summary(flights)
## year month day dep_time sched_dep_time
## Min. :2013 Min. : 1.000 Min. : 1.00 Min. : 1 Min. : 106
## 1st Qu.:2013 1st Qu.: 4.000 1st Qu.: 8.00 1st Qu.: 907 1st Qu.: 906
## Median :2013 Median : 7.000 Median :16.00 Median :1401 Median :1359
## Mean :2013 Mean : 6.549 Mean :15.71 Mean :1349 Mean :1344
## 3rd Qu.:2013 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:1744 3rd Qu.:1729
## Max. :2013 Max. :12.000 Max. :31.00 Max. :2400 Max. :2359
## NA's :8255
## dep_delay arr_time sched_arr_time arr_delay
## Min. : -43.00 Min. : 1 Min. : 1 Min. : -86.000
## 1st Qu.: -5.00 1st Qu.:1104 1st Qu.:1124 1st Qu.: -17.000
## Median : -2.00 Median :1535 Median :1556 Median : -5.000
## Mean : 12.64 Mean :1502 Mean :1536 Mean : 6.895
## 3rd Qu.: 11.00 3rd Qu.:1940 3rd Qu.:1945 3rd Qu.: 14.000
## Max. :1301.00 Max. :2400 Max. :2359 Max. :1272.000
## NA's :8255 NA's :8713 NA's :9430
## carrier flight tailnum origin
## Length:336776 Min. : 1 Length:336776 Length:336776
## Class :character 1st Qu.: 553 Class :character Class :character
## Mode :character Median :1496 Mode :character Mode :character
## Mean :1972
## 3rd Qu.:3465
## Max. :8500
##
## dest air_time distance hour
## Length:336776 Min. : 20.0 Min. : 17 Min. : 1.00
## Class :character 1st Qu.: 82.0 1st Qu.: 502 1st Qu.: 9.00
## Mode :character Median :129.0 Median : 872 Median :13.00
## Mean :150.7 Mean :1040 Mean :13.18
## 3rd Qu.:192.0 3rd Qu.:1389 3rd Qu.:17.00
## Max. :695.0 Max. :4983 Max. :23.00
## NA's :9430
## minute time_hour
## Min. : 0.00 Min. :2013-01-01 05:00:00.00
## 1st Qu.: 8.00 1st Qu.:2013-04-04 13:00:00.00
## Median :29.00 Median :2013-07-03 10:00:00.00
## Mean :26.23 Mean :2013-07-03 05:22:54.64
## 3rd Qu.:44.00 3rd Qu.:2013-10-01 07:00:00.00
## Max. :59.00 Max. :2013-12-31 23:00:00.00
##
Rows: 336,776 Columns: 19
Question 2a
maxdep <- max(flights$dep_delay, na.rm=TRUE)
maxdep_id <- which(flights$dep_delay==maxdep)
flights[maxdep_id, 10:12]
## # A tibble: 1 × 3
## carrier flight tailnum
## <chr> <int> <chr>
## 1 HA 51 N384HA
Question 2b
sortf <- arrange(flights,desc(dep_delay))
select(sortf, carrier, flight, tailnum, everything())
## # A tibble: 336,776 × 19
## carrier flight tailnum year month day dep_time sched_dep_time dep_delay
## <chr> <int> <chr> <int> <int> <int> <int> <int> <dbl>
## 1 HA 51 N384HA 2013 1 9 641 900 1301
## 2 MQ 3535 N504MQ 2013 6 15 1432 1935 1137
## 3 MQ 3695 N517MQ 2013 1 10 1121 1635 1126
## 4 AA 177 N338AA 2013 9 20 1139 1845 1014
## 5 MQ 3075 N665MQ 2013 7 22 845 1600 1005
## 6 DL 2391 N959DL 2013 4 10 1100 1900 960
## 7 DL 2119 N927DA 2013 3 17 2321 810 911
## 8 DL 2007 N3762Y 2013 6 27 959 1900 899
## 9 DL 2047 N6716C 2013 7 22 2257 759 898
## 10 AA 172 N5DMAA 2013 12 5 756 1700 896
## # ℹ 336,766 more rows
## # ℹ 10 more variables: arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>
Question 3a
not_cancelled <- flights %>%
filter(!is.na(dep_delay))
not_cancelled %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay))
## # A tibble: 365 × 4
## # Groups: year, month [12]
## year month day mean
## <int> <int> <int> <dbl>
## 1 2013 1 1 11.5
## 2 2013 1 2 13.9
## 3 2013 1 3 11.0
## 4 2013 1 4 8.95
## 5 2013 1 5 5.73
## 6 2013 1 6 7.15
## 7 2013 1 7 5.42
## 8 2013 1 8 2.55
## 9 2013 1 9 2.28
## 10 2013 1 10 2.84
## # ℹ 355 more rows
Question 3b
flights %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay, na.rm = TRUE))
## # A tibble: 365 × 4
## # Groups: year, month [12]
## year month day mean
## <int> <int> <int> <dbl>
## 1 2013 1 1 11.5
## 2 2013 1 2 13.9
## 3 2013 1 3 11.0
## 4 2013 1 4 8.95
## 5 2013 1 5 5.73
## 6 2013 1 6 7.15
## 7 2013 1 7 5.42
## 8 2013 1 8 2.55
## 9 2013 1 9 2.28
## 10 2013 1 10 2.84
## # ℹ 355 more rows
The average arrival delay per tail number
not_cancelled <- flights %>%
filter(!is.na(arr_delay))
avg_delays <- not_cancelled %>%
group_by(tailnum) %>%
summarise(mean_arr_delay = mean(arr_delay, na.rm = TRUE))
Find the tail number that has lowest value of average arrival
delay
lowest_delay_tailnum <- avg_delays %>%
arrange(mean_arr_delay) %>%
slice(1) %>%
pull(tailnum)
print(lowest_delay_tailnum)
## [1] "N560AS"
Question 5
not_cancelled %>%
group_by(year, month, day) %>%
summarise(
first = min(dep_time, na.rm = TRUE),
last = max(dep_time, na.rm = TRUE)
) %>%
arrange(desc(last)) # Sort by latest departure time
## # A tibble: 365 × 5
## # Groups: year, month [12]
## year month day first last
## <int> <int> <int> <int> <int>
## 1 2013 2 7 27 2400
## 2 2013 2 11 1 2400
## 3 2013 3 15 11 2400
## 4 2013 3 22 37 2400
## 5 2013 3 25 13 2400
## 6 2013 4 2 9 2400
## 7 2013 4 4 14 2400
## 8 2013 4 20 7 2400
## 9 2013 5 21 110 2400
## 10 2013 6 17 2 2400
## # ℹ 355 more rows
Question 6
not_cancelled %>%
group_by(month) %>%
summarise(
total_flights = n(),
delayed_flights = sum(dep_delay > 60, na.rm = TRUE),
proportion_delayed = delayed_flights / total_flights
) %>%
arrange(desc(proportion_delayed))
## # A tibble: 12 × 4
## month total_flights delayed_flights proportion_delayed
## <int> <int> <int> <dbl>
## 1 7 28293 3765 0.133
## 2 6 27075 3459 0.128
## 3 12 27020 2528 0.0936
## 4 4 27564 2506 0.0909
## 5 3 27902 2322 0.0832
## 6 5 28128 2284 0.0812
## 7 8 28756 2283 0.0794
## 8 2 23611 1638 0.0694
## 9 1 26398 1808 0.0685
## 10 9 27010 1313 0.0486
## 11 10 28618 1341 0.0469
## 12 11 26971 1082 0.0401
Question 7
not_cancelled %>%
group_by(dest) %>%
summarise(num_carriers = n_distinct(carrier)) %>%
arrange(desc(num_carriers))
## # A tibble: 104 × 2
## dest num_carriers
## <chr> <int>
## 1 ATL 7
## 2 BOS 7
## 3 CLT 7
## 4 ORD 7
## 5 TPA 7
## 6 AUS 6
## 7 DCA 6
## 8 DTW 6
## 9 IAD 6
## 10 MSP 6
## # ℹ 94 more rows