Comprobación de versión de R y paquetes instalados |
Antonio Caruz |
04-03-2025 |
sessionInfo ()
R version 4.4.2 (2024-10-31 ucrt) Platform: x86_64-w64-mingw32/x64 Running under: Windows 11 x64 (build 22631)
Matrix products: default
locale: [1] LC_COLLATE=Spanish_Spain.utf8 LC_CTYPE=Spanish_Spain.utf8
LC_MONETARY=Spanish_Spain.utf8 LC_NUMERIC=C
[5] LC_TIME=Spanish_Spain.utf8
time zone: Europe/Madrid tzcode source: internal
attached base packages: [1] stats graphics grDevices utils datasets methods base
other attached packages: [1] MASS_7.3-65 readxl_1.4.3 knitr_1.49
loaded via a namespace (and not attached): [1] digest_0.6.37
fastmap_1.2.0 xfun_0.50 cellranger_1.1.0 magrittr_2.0.3 glue_1.8.0
tibble_3.2.1
[8] pkgconfig_2.0.3 htmltools_0.5.8.1 rmarkdown_2.29 lifecycle_1.0.4
cli_3.6.3 vctrs_0.6.5 compiler_4.4.2
[15] tools_4.4.2 evaluate_1.0.3 pillar_1.10.1 yaml_2.3.10
rlang_1.1.4
installed_packages
[1] “abind” “askpass” “backports” “base64enc” “BH” “Biobase”
[7] “BiocGenerics” “BiocManager” “BiocParallel” “BiocVersion”
“Biostrings” “bit”
[13] “bit64” “bitops” “brew” “bslib” “cachem” “callr”
[19] “cellranger” “cli” “clipr” “collections” “colorspace”
“commonmark”
[25] “cpp11” “crayon” “curl” “cyclocomp” “DelayedArray” “deldir”
[31] “desc” “digest” “dplyr” “epitools” “evaluate” “fansi”
[37] “farver” “fastmap” “fontawesome” “formatR” “fs”
“futile.logger”
[43] “futile.options” “gdata” “generics” “GenomeInfoDb”
“GenomeInfoDbData” “GenomicAlignments”
[49] “GenomicRanges” “ggplot2” “glue” “gtable” “gtools” “highr”
[55] “hms” “htmltools” “httr” “hwriter” “interp” “IRanges”
[61] “isoband” “jpeg” “jquerylib” “jsonlite” “kernlab” “knitr”
[67] “labeling” “lambda.r” “languageserver” “latticeExtra” “lazyeval”
“lifecycle”
[73] “lintr” “magrittr” “MASS” “MatrixGenerics” “matrixStats”
“memoise”
[79] “mime” “munsell” “openssl” “openxlsx” “pillar” “pkgbuild”
[85] “pkgconfig” “pkgload” “png” “prettyunits” “processx”
“progress”
[91] “ps” “purrr” “pwalign” “R.cache” “R.methodsS3” “R.oo”
[97] “R.utils” “R6” “rappdirs” “RColorBrewer” “Rcpp” “RcppEigen”
[103] “readr” “readxl” “rematch” “remotes” “rentrez” “rex”
[109] “Rhtslib” “rlang” “rmarkdown” “roxygen2” “rprojroot”
“Rsamtools”
[115] “S4Arrays” “S4Vectors” “sass” “scales” “ShortRead” “sm”
[121] “snow” “SparseArray” “stringi” “stringr” “styler”
“SummarizedExperiment” [127] “survival” “sys” “tibble” “tidyselect”
“tinytex” “tzdb”
[133] “UCSC.utils” “utf8” “vctrs” “vioplot” “viridisLite” “vroom”
[139] “withr” “writexl” “xfun” “XML” “xml2” “xmlparsedata”
[145] “XVector” “yaml” “zip” “zlibbioc” “zoo” “base”
[151] “boot” “class” “cluster” “codetools” “compiler” “datasets”
[157] “foreign” “graphics” “grDevices” “grid” “KernSmooth”
“lattice”
[163] “MASS” “Matrix” “methods” “mgcv” “nlme” “nnet”
[169] “parallel” “rpart” “spatial” “splines” “stats” “stats4”
[175] “survival” “tcltk” “tools” “translations” “utils”
library()
1.abind:Combine Multidimensional Arrays
2.askpass:Password Entry Utilities for R, Git, and
SSH
3.backports:Reimplementations of Functions Introduced
Since R-3.0.0
4.base64enc:Tools for base64 encoding
5.BH: Boost C++ Header Files
6.Biobase:Biobase: Base functions for
Bioconductor
7.BiocGenerics:S4 generic functions used in
Bioconductor
8.BiocManager: Access the Bioconductor Project Package
Repository
9.BiocParallel:Bioconductor facilities for parallel
evaluation
10.BiocVersion: Set the appropriate version of
Bioconductor packages
11.Biostrings: Efficient manipulation of biological
strings
12.bit: Classes and Methods for Fast Memory-Efficient
Boolean Selections
13.bit64:A S3 Class for Vectors of 64bit Integers
14.bitops: Bitwise Operations
15.brew: Templating Framework for Report
Generation
16.bslib:Custom ‘Bootstrap’ ‘Sass’ Themes for ‘shiny’
and ‘rmarkdown’
17.cachem: Cache R Objects with Automatic Pruning
18.callr:Call R from R
19.cellranger: Translate Spreadsheet Cell Ranges to
Rows and Columns
20.cli: Helpers for Developing Command Line
Interfaces
21.clipr:Read and Write from the System Clipboard
22.collections: High Performance Container Data
Types
23.colorspace: A Toolbox for Manipulating and Assessing
Colors and Palettes
24.commonmark: High Performance CommonMark and Github
Markdown Rendering in R
25.cpp11:A C++11 Interface for R’s C Interface
26.crayon: Colored Terminal Output
27.curl: A Modern and Flexible Web Client for R
28.cyclocomp:Cyclomatic Complexity of R Code
29.DelayedArray:A unified framework for working
transparently with on-disk and in-memory array-like datasets
30.deldir: Delaunay Triangulation and Dirichlet
(Voronoi) Tessellation
31.desc: Manipulate DESCRIPTION Files
32.digest: Create Compact Hash Digests of R
Objects
33.dplyr:A Grammar of Data Manipulation
34.epitools: Epidemiology Tools
35.evaluate: Parsing and Evaluation Tools that Provide
More Details than the Default
36.fansi:ANSI Control Sequence Aware String
Functions
37.farver: High Performance Colour Space
Manipulation
38.fastmap:Fast Data Structures
39.fontawesome: Easily Work with ‘Font Awesome’
Icons
40.formatR:Format R Code Automatically
41.fs: Cross-Platform File System Operations Based on
‘libuv’
42.futile.logger: A Logging Utility for R
43.futile.options: Futile Options Management
44.gdata:Various R Programming Tools for Data
Manipulation
45.generics: Common S3 Generics not Provided by Base R
Methods Related to Model Fitting
46.GenomeInfoDb:Utilities for manipulating chromosome
names, including modifying them to follow a particular naming
style
47.GenomeInfoDbData:Species and taxonomy ID look up
tables used by GenomeInfoDb
48.GenomicAlignments:Representation and manipulation of
short genomic alignments
49.GenomicRanges: Representation and manipulation of
genomic intervals
50.ggplot2:Create Elegant Data Visualisations Using the
Grammar of Graphics
51.glue: Interpreted String Literals
52.gtable: Arrange ‘Grobs’ in Tables
53.gtools: Various R Programming Tools
54.highr:Syntax Highlighting for R Source Code
55.hms: Pretty Time of Day
56.htmltools:Tools for HTML
57.httr: Tools for Working with URLs and HTTP
58.hwriter:HTML Writer - Outputs R Objects in HTML
Format
59.interp: Interpolation Methods
60.IRanges:Foundation of integer range manipulation in
Bioconductor
61.isoband:Generate Isolines and Isobands from
Regularly Spaced Elevation Grids
62.jpeg: Read and write JPEG images
63.jquerylib:Obtain ‘jQuery’ as an HTML Dependency
Object
64.jsonlite: A Simple and Robust JSON Parser and
Generator for R
65.kernlab:Kernel-Based Machine Learning Lab
66.knitr:A General-Purpose Package for Dynamic Report
Generation in R
67.labeling: Axis Labeling
68.lambda.r: Modeling Data with Functional
Programming
69.languageserver: Language Server Protocol
70.latticeExtra:Extra Graphical Utilities Based on
Lattice
71.lazyeval: Lazy (Non-Standard) Evaluation
72.lifecycle:Manage the Life Cycle of your Package
Functions
73.lintr:A ‘Linter’ for R Code
74.magrittr: A Forward-Pipe Operator for R
75.MASS: Support Functions and Datasets for Venables
and Ripley’s MASS
76.MatrixGenerics: S4 Generic Summary Statistic
Functions that Operate on Matrix-Like Objects
77.matrixStats: Functions that Apply to Rows and
Columns of Matrices (and to Vectors)
78.memoise:‘Memoisation’ of Functions
79.mime: Map Filenames to MIME Types
80.munsell:Utilities for Using Munsell Colours
81.openssl:Toolkit for Encryption, Signatures and
Certificates Based on OpenSSL
82.openxlsx: Read, Write and Edit xlsx Files
83.pillar: Coloured Formatting for Columns
84.pkgbuild: Find Tools Needed to Build R
Packages
85.pkgconfig:Private Configuration for ‘R’
Packages
86.pkgload:Simulate Package Installation and
Attach
87.png: Read and write PNG images
88.prettyunits: Pretty, Human Readable Formatting of
Quantities
89.processx: Execute and Control System Processes
90.progress: Terminal Progress Bars
91.ps: List, Query, Manipulate System Processes
92.purrr:Functional Programming Tools
93.pwalign:Perform pairwise sequence alignments
94.R.cache:Fast and Light-Weight Caching (Memoization)
of Objects and Results to Speed Up computations
95.R.methodsS3: S3 Methods Simplified
96.R.oo: R Object-Oriented Programming with or without
References
97.R.utils:Various Programming Utilities
98.R6: Encapsulated Classes with Reference
Semantics
99.rappdirs: Application Directories: Determine Where
to Save Data, Caches, and Logs
100.RColorBrewer:ColorBrewer Palettes
101.Rcpp: Seamless R and C++ Integration
102.RcppEigen:‘Rcpp’ Integration for the ‘Eigen’
Templated Linear Algebra Library
103.readr:Read Rectangular Text Data
104.readxl: Read Excel Files
105.rematch:Match Regular Expressions with a Nicer
‘API’
106.remotes:R Package Installation from Remote
Repositories, Including ‘GitHub’
107.rentrez:‘Entrez’ in R
108.rex: Friendly Regular Expressions
109.Rhtslib:HTSlib high-throughput sequencing library
as an R package
110.rlang:Functions for Base Types and Core R and
‘Tidyverse’ Features
111.rmarkdown:Dynamic Documents for R
112.roxygen2: In-Line Documentation for R
113.rprojroot:Finding Files in Project
Subdirectories
114.Rsamtools:Binary alignment (BAM), FASTA, variant
call (BCF), and tabix file import
115.S4Arrays: Foundation of array-like containers in
Bioconductor
116.S4Vectors:Foundation of vector-like and list-like
containers in Bioconductor
117.sass: Syntactically Awesome Style Sheets
(‘Sass’)
118.scales: Scale Functions for Visualization
119.ShortRead:FASTQ input and manipulation
120.sm: Smoothing Methods for Nonparametric Regression
and Density Estimation
121.snow: Simple Network of Workstations
122.SparseArray: High-performance sparse data
representation and manipulation in R
123.stringi:Fast and Portable Character String
Processing Facilities
124.stringr:Simple, Consistent Wrappers for Common
String Operations
125.styler: Non-Invasive Pretty Printing of R
Code
126.SummarizedExperiment: A container (S4 class) for
matrix-like assays
127.survival: Survival Analysis
128.sys: Powerful and Reliable Tools for Running System
Commands in R
129.tibble: Simple Data Frames
130.tidyselect: Select from a Set of Strings
131.tinytex:Helper Functions to Install and Maintain
TeX Live, and Compile LaTeX Documents
132.tzdb: Time Zone Database Information
133.UCSC.utils: Low-level utilities to retrieve data
from the UCSC Genome Browser
134.utf8: Unicode Text Processing
135.vctrs:Vector Helpers
136.vioplot:Violin Plot
137.viridisLite: Colorblind-Friendly Color Maps (Lite
Version)
138.vroom:Read and Write Rectangular Text Data
Quickly
139.withr:Run Code ‘With’ Temporarily Modified Global
State
140.writexl:Export Data Frames to Excel ‘xlsx’
Format
141.xfun: Supporting Functions for Packages Maintained
by ‘Yihui Xie’
142.XML: Tools for Parsing and Generating XML Within R
and S-Plus
143.xml2: Parse XML
144.xmlparsedata:Parse Data of ‘R’ Code as an ‘XML’
Tree
145.XVector:Foundation of external vector
representation and manipulation in Bioconductor
146.yaml: Methods to Convert R Data to YAML and
Back
147.zip: Cross-Platform ‘zip’ Compression
148.zlibbioc: An R packaged zlib-1.2.5
149.zoo: S3 Infrastructure for Regular and Irregular
Time Series (Z’s Ordered Observations)
.libPaths()
[1] “C:/Users/UJA/AppData/Local/R/win-library/4.4” “C:/Program Files/R/R-4.4.2/library”
summary(data.frame(iris))
library(knitr)
# Crear el data frame con los datos resumidos
summary_table <- data.frame(
Statistic = c("Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max."),
Sepal.Length = c(4.3, 5.1, 5.8, 5.843, 6.4, 7.9),
Sepal.Width = c(2.0, 2.8, 3.0, 3.057, 3.3, 4.4),
Petal.Length = c(1.0, 1.6, 4.35, 3.758, 5.1, 6.9),
Petal.Width = c(0.1, 0.3, 1.3, 1.199, 1.8, 2.5)
)library(knitr)
kable(df, caption = "Tabla de datos")
# Generar la tabla en formato Markdown
kable(summary_table, caption = "Resumen Estadístico del Conjunto de Datos Iris")
Statistic | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
---|---|---|---|---|
Min. | 4.300 | 2.000 | 1.000 | 0.100 |
1st Qu. | 5.100 | 2.800 | 1.600 | 0.300 |
Median | 5.800 | 3.000 | 4.350 | 1.300 |
Mean | 5.843 | 3.057 | 3.758 | 1.199 |
3rd Qu. | 6.400 | 3.300 | 5.100 | 1.800 |
Max. | 7.900 | 4.400 | 6.900 | 2.500 |
fivenum(iris$Sepal.Width) # Para Sepal.Width
fivenum(iris$Petal.Length) # Para Petal.Length
Para Sepal.Width [1] 2.0 2.8 3.0 3.3 4.4
Para Petal.Length [1] 1.00 1.60 4.35 5.10 6.90
vie # Ejercicio 3
anorexia_na <- anorexia[!complete.cases(anorexia), ]
View(anorexia_na)
No data available in table
anorexia[anorexia == "CBT"] <- "Cogn_Beh_Tr"
anorexia[anorexia == "Cont"] <- "Contr"
anorexia[anorexia == "FT"] <- "Fam_Tr"
library(knitr)
kable(anorexia, caption = "Tabla de datos anorexia modificada")
**he tenido que poner un “_” en los datos con espacios en blanco ya que si no me generaba un error “NA”** Table: Tabla de datos anorexia modificada
Treat | Prewt | Postwt |
---|---|---|
Contr | 807 | 802 |
Contr | 894 | 801 |
Contr | 918 | 864 |
Contr | 74 | 863 |
Contr | 781 | 761 |
Contr | 883 | 781 |
Contr | 873 | 751 |
Contr | 751 | 867 |
Contr | 806 | 735 |
Contr | 784 | 846 |
Contr | 776 | 774 |
Contr | 887 | 795 |
Contr | 813 | 896 |
Contr | 781 | 814 |
Contr | 705 | 818 |
Contr | 773 | 773 |
Contr | 852 | 842 |
Contr | 86 | 754 |
Contr | 841 | 795 |
Contr | 797 | 73 |
Contr | 855 | 883 |
Contr | 844 | 847 |
Contr | 796 | 814 |
Contr | 775 | 812 |
Contr | 723 | 882 |
Contr | 89 | 788 |
Cog_Beh_Tr | 805 | 822 |
Cog_Beh_Tr | 849 | 856 |
Cog_Beh_Tr | 815 | 814 |
Cog_Beh_Tr | 826 | 819 |
Cog_Beh_Tr | 799 | 764 |
Cog_Beh_Tr | 887 | 1036 |
Cog_Beh_Tr | 949 | 984 |
Cog_Beh_Tr | 763 | 934 |
Cog_Beh_Tr | 81 | 734 |
Cog_Beh_Tr | 805 | 821 |
Cog_Beh_Tr | 85 | 967 |
Cog_Beh_Tr | 892 | 953 |
Cog_Beh_Tr | 813 | 824 |
Cog_Beh_Tr | 765 | 725 |
Cog_Beh_Tr | 70 | 909 |
Cog_Beh_Tr | 804 | 713 |
Cog_Beh_Tr | 833 | 854 |
Cog_Beh_Tr | 83 | 816 |
Cog_Beh_Tr | 877 | 891 |
Cog_Beh_Tr | 842 | 839 |
Cog_Beh_Tr | 864 | 827 |
Cog_Beh_Tr | 765 | 757 |
Cog_Beh_Tr | 802 | 826 |
Cog_Beh_Tr | 878 | 1004 |
Cog_Beh_Tr | 833 | 852 |
Cog_Beh_Tr | 797 | 836 |
Cog_Beh_Tr | 845 | 846 |
Cog_Beh_Tr | 808 | 962 |
Cog_Beh_Tr | 874 | 867 |
Fam_Tr | 838 | 952 |
Fam_Tr | 833 | 943 |
Fam_Tr | 86 | 915 |
Fam_Tr | 825 | 919 |
Fam_Tr | 867 | 1003 |
Fam_Tr | 796 | 767 |
Fam_Tr | 769 | 768 |
Fam_Tr | 942 | 1016 |
Fam_Tr | 734 | 949 |
Fam_Tr | 805 | 752 |
Fam_Tr | 816 | 778 |
Fam_Tr | 821 | 955 |
Fam_Tr | 776 | 907 |
Fam_Tr | 835 | 925 |
Fam_Tr | 899 | 938 |
Fam_Tr | 86 | 917 |
Fam_Tr | 873 | 98 |
write.csv(biopsy, "biopsy.csv", quote = FALSE, row.names = FALSE)
write.csv2(biopsy, "biopsy2.csv, quote = FALSE, row.names = FALSE)
write.xlsx(biopsy, "biopsy.xlsx")
#
#
summary(Melanoma$age)
sink("Resumen_Age.doc")
#
library(knitr)
kable(gwas.LILRB1, caption = "LILRB1 GWAS Association")
DATE.ADDED.TO.CATALOG | PUBMEDID | FIRST.AUTHOR | DATE | JOURNAL | LINK | STUDY | DISEASE.TRAIT | INITIAL.SAMPLE.SIZE | REPLICATION.SAMPLE.SIZE | REGION | CHR_ID | CHR_POS | REPORTED.GENE.S. | MAPPED_GENE | UPSTREAM_GENE_ID | DOWNSTREAM_GENE_ID | SNP_GENE_IDS | UPSTREAM_GENE_DISTANCE | DOWNSTREAM_GENE_DISTANCE | STRONGEST.SNP.RISK.ALLELE | SNPS | MERGED | SNP_ID_CURRENT | CONTEXT | INTERGENIC | RISK.ALLELE.FREQUENCY | P.VALUE | PVALUE_MLOG | P.VALUE..TEXT. | OR.or.BETA | X95..CI..TEXT. | PLATFORM..SNPS.PASSING.QC. | CNV | MAPPED_TRAIT | MAPPED_TRAIT_URI | STUDY.ACCESSION | GENOTYPING.TECHNOLOGY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017-08-04 | 27989323 | Ahola-Olli AV | 2016-12-13 | Am J Hum Genet | www.ncbi.nlm.nih.gov/pubmed/27989323 | Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. | Interleukin-18 levels | 3,636 Finnish ancestry individuals | NA | 19q13.42 | 19 | 54634619 | NR | LILRB1 | ENSG00000104972 | NA | NA | rs10414578-C | rs10414578 | 0 | 10414578 | intron_variant | 0 | NR | 4e-07 | 6.397940 | NA | 0.177100 | [0.11-0.25] SD units increase | NR [10700000] (imputed) | N | interleukin 18 measurement | http://www.ebi.ac.uk/efo/EFO_0004581 | GCST004441 | Genome-wide genotyping array | ||
2023-06-23 | 35870639 | Surapaneni A | 2022-07-21 | Kidney Int | www.ncbi.nlm.nih.gov/pubmed/35870639 | Identification of 969 protein quantitative trait loci in an African American population with kidney disease attributed to hypertension. | Leukocyte immunoglobulin-like receptor subfamily B member 1 level in Chronic kidney disease with hypertension and no diabetes (5090_49) | 466 African American individuals | NA | 19q13.42 | 19 | 54632531 | LILRB1 | ENSG00000104972 | NA | NA | rs10427127-C | rs10427127 | 0 | 10427127 | synonymous_variant | 0 | 0.37 | 0e+00 | 102.522879 | NA | 1.030000 | [0.93-1.13] unit decrease | Illumina [14870897] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90237833 | Genome-wide genotyping array | |||
2022-04-11 | 28240269 | Suhre K | 2017-02-27 | Nat Commun | www.ncbi.nlm.nih.gov/pubmed/28240269 | Connecting genetic risk to disease end points through the human blood plasma proteome. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 997 European ancestry individuals | 338 Greater Middle Eastern (Middle Eastern, North African or Persian), South Asian ancestry, Asian ancestry individuals | 19q13.42 | 19 | 54626781 | LILRB1 | ENSG00000104972 | NA | NA | rs2004318-T | rs2004318 | 0 | 2004318 | intergenic_variant | 0 | NR | 0e+00 | 79.698970 | NA | 1.789000 | [1.62-1.96] unit decrease | Affymetrix [509946] | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90101259 | Genome-wide genotyping array | |||
2022-12-13 | 34620218 | Meeks KAC | 2021-10-07 | Genome Med | www.ncbi.nlm.nih.gov/pubmed/34620218 | Genome-wide analyses of multiple obesity-related cytokines and hormones informs biology of cardiometabolic traits. | Visfatin levels in type 2 diabetes | 1,844 Sub-Saharan African ancestry individuals | NA | 19q13.42 | 19 | 54623275 | LILRB1 | ENSG00000104972 | NA | NA | rs79612392-A | rs79612392 | 0 | 79612392 | intergenic_variant | 0 | NR | 0e+00 | 7.397940 | NA | 0.828000 | [0.53-1.12] unit increase | Affymetrix, Illumina [NR] (imputed) | N | visfatin measurement | http://www.ebi.ac.uk/efo/EFO_0801230 | GCST90091205 | Genome-wide genotyping array | |||
2021-09-27 | 33830181 | Tideman JWL | 2021-04-08 | JAMA Ophthalmol | www.ncbi.nlm.nih.gov/pubmed/33830181 | Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. | High myopia | 3,164 European ancestry high myopic cases, 21,416 European ancestry emmetropia controls | NA | 19q13.42 | 19 | 54634419 | NR | LILRB1 | ENSG00000104972 | NA | NA | rs4021202-? | rs4021202 | 0 | 4021202 | intron_variant | 0 | NR | 4e-07 | 6.397940 | NA | 1.196280 | [0.73-1.66] unit increase | NR [13958389] (imputed) | N | Myopia | http://purl.obolibrary.org/obo/HP_0000545 | GCST012403 | Genome-wide genotyping array | ||
2023-01-10 | 29875488 | Sun BB | 2018-06-06 | Nature | www.ncbi.nlm.nih.gov/pubmed/29875488 | Genomic atlas of the human plasma proteome. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels (LILRB1.5090.49.2) | 3,301 European ancestry individuals | NA | 19q13.42 | 19 | 54633260 | LILRB1 | ENSG00000104972 | NA | NA | rs61739176-C | rs61739176 | 0 | 61739176 | missense_variant | 0 | 0.039 | 0e+00 | 283.698970 | NA | 2.070000 | [-1.95–2.19] unit decrease | Affymetrix [10572788] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90241793 | Genome-wide genotyping array | |||
2023-01-10 | 29875488 | Sun BB | 2018-06-06 | Nature | www.ncbi.nlm.nih.gov/pubmed/29875488 | Genomic atlas of the human plasma proteome. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels (LILRB1.5090.49.2) | 3,301 European ancestry individuals | NA | 19q13.42 | 19 | 54633642 | LILRB1 | ENSG00000104972 | NA | NA | rs2114511-C | rs2114511 | 0 | 2114511 | synonymous_variant | 0 | 0.051 | 0e+00 | 336.000000 | NA | 1.810000 | [-1.71–1.91] unit decrease | Affymetrix [10572788] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90241793 | Genome-wide genotyping array | |||
2022-10-24 | 36168886 | Thareja G | 2022-09-28 | Hum Mol Genet | www.ncbi.nlm.nih.gov/pubmed/36168886 | Differences and commonalities in the genetic architecture of protein quantitative trait loci in European and Arab populations. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 2,935 Qatari ancestry individuals | NA | 19q13.42 | 19 | 54632388 | LILRB1 | ENSG00000104972 | NA | NA | rs10426886-A | rs10426886 | 0 | 10426886 | intron_variant | 0 | 0.0967632 | 0e+00 | 276.000000 | NA | 1.583110 | [1.5-1.67] unit decrease | NR [10004359] | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90162284 | Genome-wide sequencing | |||
2022-09-27 | 34814699 | Katz DH | 2021-11-24 | Circulation | www.ncbi.nlm.nih.gov/pubmed/34814699 | Whole Genome Sequence Analysis of the Plasma Proteome in Black Adults Provides Novel Insights Into Cardiovascular Disease. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 1,852 African American or Afro-Caribbean individuals | 1,688 African American or Afro-Caribbean, Hispanic or Latin American, Asian ancestry, European ancestry individuals | 19q13.42 | 19 | 54632690 | LILRB1 | ENSG00000104972 | NA | NA | rs10425827-? | rs10425827 | 0 | 10425827 | synonymous_variant | 0 | NR | 0e+00 | 261.154902 | NA | 1.070000 | [1.01-1.13] unit decrease | Illumina [NR] | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90137944 | Genome-wide sequencing | |||
2023-08-08 | 37031923 | Benca-Bachman CE | 2023-04-07 | Mol Cell Neurosci | www.ncbi.nlm.nih.gov/pubmed/37031923 | Polygenic influences on the behavioral effects of alcohol withdrawal in a mixed-ancestry population from the collaborative study on the genetics of alcoholism (COGA). | Alcohol withdrawal factor score | 8,009 European, African or unknown ancestry individuals from families | NA | 19q13.42 | 19 | 54632001 | LILRB1 | ENSG00000104972 | NA | NA | rs1061680-C | rs1061680 | 0 | 1061680 | missense_variant | 0 | 0.37 | 2e-06 | 5.698970 | NA | 0.080000 | unit increase | Illumina [2665312] (imputed) | N | alcohol use disorder measurement | http://www.ebi.ac.uk/efo/EFO_0009458 | GCST90275372 | Genome-wide genotyping array | |||
2023-04-03 | 34648354 | Pietzner M | 2021-11-12 | Science | www.ncbi.nlm.nih.gov/pubmed/34648354 | Mapping the proteo-genomic convergence of human diseases. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 10,708 European ancestry individuals | NA | 19q13.42 | 19 | 54632388 | LILRB1 | ENSG00000104972 | NA | NA | rs10426886-A | rs10426886 | 0 | 10426886 | intron_variant | 0 | 0.05 | 0e+00 | 1082.397940 | NA | 1.799000 | [1.75-1.85] unit decrease | Affymetrix, Illumina [10200000] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90248301 | Genome-wide genotyping array | |||
2023-04-03 | 34648354 | Pietzner M | 2021-11-12 | Science | www.ncbi.nlm.nih.gov/pubmed/34648354 | Mapping the proteo-genomic convergence of human diseases. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 10,708 European ancestry individuals | NA | 19q13.42 | 19 | 54617625 | LILRB1 | ENSG00000104972 | NA | NA | rs12610058-C | rs12610058 | 0 | 12610058 | intergenic_variant | 0 | 0.73 | 0e+00 | 68.221849 | NA | 0.262000 | [0.23-0.29] unit decrease | Affymetrix, Illumina [10200000] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90248301 | Genome-wide genotyping array | |||
2024-09-18 | 34857772 | Png G | 2021-12-02 | Nat Commun | www.ncbi.nlm.nih.gov/pubmed/34857772 | Mapping the serum proteome to neurological diseases using whole genome sequencing. | Leukocyte-associated immunoglobulin-like receptor 2 levels | 2,893 European ancestry individuals | NA | 19q13.42 | 19 | 54632675 | LILRB1 | ENSG00000104972 | NA | NA | rs61737950-T | rs61737950 | 0 | 61737950 | synonymous_variant | 0 | 0.0345 | 0e+00 | 12.522879 | NA | 0.567900 | [0.42-0.72] unit decrease | Illumina [12392021] | N | level of leukocyte-associated immunoglobulin-like receptor 2 in blood serum | http://purl.obolibrary.org/obo/OBA_2040346 | GCST90059999 | Genome-wide sequencing [HiSeq X] | |||
2023-01-10 | 29875488 | Sun BB | 2018-06-06 | Nature | www.ncbi.nlm.nih.gov/pubmed/29875488 | Genomic atlas of the human plasma proteome. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels (LILRB1.5090.49.2) | 3,301 European ancestry individuals | NA | 19q13.42 | 19 | 54636580 | LILRB1, LILRB1-AS1 | ENSG00000104972, ENSG00000224730 | NA | NA | rs41308746-C | rs41308746 | 0 | 41308746 | synonymous_variant | 0 | 0.126 | 0e+00 | 36.221849 | NA | 0.480000 | [-0.4–0.56] unit decrease | Affymetrix [10572788] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90241793 | Genome-wide genotyping array | |||
2023-01-10 | 29875488 | Sun BB | 2018-06-06 | Nature | www.ncbi.nlm.nih.gov/pubmed/29875488 | Genomic atlas of the human plasma proteome. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels (LILRB1.5090.49.2) | 3,301 European ancestry individuals | NA | 19q13.42 | 19 | 54636058 | LILRB1-AS1, LILRB1 | ENSG00000224730, ENSG00000104972 | NA | NA | rs113420280-T | rs113420280 | 0 | 113420280 | intron_variant | 0 | 0.129 | 0e+00 | 27.154902 | NA | 0.410000 | [-0.33–0.49] unit decrease | Affymetrix [10572788] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90241793 | Genome-wide genotyping array | |||
2022-10-24 | 36168886 | Thareja G | 2022-09-28 | Hum Mol Genet | www.ncbi.nlm.nih.gov/pubmed/36168886 | Differences and commonalities in the genetic architecture of protein quantitative trait loci in European and Arab populations. | Leukocyte immunoglobulin-like receptor subfamily B member 2 levels | 2,935 Qatari ancestry individuals | NA | 19q13.42 | 19 | 54636880 | LILRB1-AS1, LILRB1 | ENSG00000224730, ENSG00000104972 | NA | NA | rs8101240-T | rs8101240 | 0 | 8101240 | 3_prime_UTR_variant | 0 | 0.134923 | 0e+00 | 10.698970 | NA | 0.264938 | [0.19-0.34] unit decrease | NR [10004359] | N | leukocyte immunoglobulin-like receptor subfamily B member 2 measurement | http://www.ebi.ac.uk/efo/EFO_0008209 | GCST90162285 | Genome-wide sequencing | |||
2017-08-04 | 27989323 | Ahola-Olli AV | 2016-12-13 | Am J Hum Genet | www.ncbi.nlm.nih.gov/pubmed/27989323 | Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. | Interleukin-7 levels | 3,409 Finnish ancestry individuals | NA | 19q13.42 | 19 | 54606728 | NR | LILRA1 - LILRB1 | ENSG00000104974 | ENSG00000104972 | 4347 | 10430 | rs147747784-G | rs147747784 | 0 | 147747784 | intergenic_variant | 1 | NR | 1e-07 | 7.045757 | NA | 0.413400 | [0.26-0.57] SD units decrease | NR [10700000] (imputed) | N | interleukin 7 measurement | http://www.ebi.ac.uk/efo/EFO_0008189 | GCST004451 | Genome-wide genotyping array | |
2017-08-04 | 27989323 | Ahola-Olli AV | 2016-12-13 | Am J Hum Genet | www.ncbi.nlm.nih.gov/pubmed/27989323 | Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. | Interleukin-13 levels | 3,557 Finnish ancestry individuals | NA | 19q13.42 | 19 | 54606728 | NR | LILRA1 - LILRB1 | ENSG00000104974 | ENSG00000104972 | 4347 | 10430 | rs147747784-G | rs147747784 | 0 | 147747784 | intergenic_variant | 1 | NR | 1e-06 | 6.000000 | NA | 0.367100 | [0.22-0.52] SD units decrease | NR [10700000] (imputed) | N | interleukin 13 measurement | http://www.ebi.ac.uk/efo/EFO_0008171 | GCST004443 | Genome-wide genotyping array | |
2024-08-15 | 38867047 | Liu A | 2024-06-12 | Nature | www.ncbi.nlm.nih.gov/pubmed/38867047 | Genetic drivers and cellular selection of female mosaic X chromosome loss. | Mosaic loss of chromosome X | 806,257 European ancestry females, 77,317 East Asian ancestry females | NA | 19q13.42 | 19 | 54609641 | LILRA1 - LILRB1 | ENSG00000104974 | ENSG00000104972 | 7260 | 7517 | rs10411397-? | rs10411397 | 0 | 10411397 | intergenic_variant | 1 | NR | 0e+00 | 8.522879 | NA | NA | Affymetrix, Illumina [33737924] (imputed) | N | GCST90328148 | Genome-wide genotyping array | |||||
2024-08-15 | 38867047 | Liu A | 2024-06-12 | Nature | www.ncbi.nlm.nih.gov/pubmed/38867047 | Genetic drivers and cellular selection of female mosaic X chromosome loss. | Mosaic loss of chromosome X | 91,689 European ancestry female cases, 714,568 European ancestry female controls, 13,597 East Asian ancestry female cases, 63,720 East Asian ancestry female controls | NA | 19q13.42 | 19 | 54609641 | LILRA1 - LILRB1 | ENSG00000104974 | ENSG00000104972 | 7260 | 7517 | rs10411397-? | rs10411397 | 0 | 10411397 | intergenic_variant | 1 | NR | 3e-07 | 6.522879 | NA | 0.026100 | [0.016-0.036] unit decrease | Affymetrix, Illumina [33369619] (imputed) | N | GCST90328150 | Genome-wide genotyping array | ||||
2024-12-13 | 39528825 | Western D | 2024-11-11 | Nat Genet | www.ncbi.nlm.nih.gov/pubmed/39528825 | Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and implicates causal proteins for Alzheimer’s disease. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 3,506 European ancestry individuals | NA | 19q13.42 | 19 | 54610810 | LILRA1 - LILRB1 | ENSG00000104974 | ENSG00000104972 | 8429 | 6348 | rs57086032-C | rs57086032 | 0 | 57086032 | intergenic_variant | 1 | 0.0483871 | 0e+00 | 240.397940 | NA | 1.733300 | [1.64-1.83] unit decrease | Affymetrix, Illumina [7327953] (imputed) | N | protein measurement | http://www.ebi.ac.uk/efo/EFO_0004747 | GCST90426235 | Genome-wide genotyping array, Genome-wide sequencing [NA] | ||
2022-10-24 | 36168886 | Thareja G | 2022-09-28 | Hum Mol Genet | www.ncbi.nlm.nih.gov/pubmed/36168886 | Differences and commonalities in the genetic architecture of protein quantitative trait loci in European and Arab populations. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 2,935 Qatari ancestry individuals | NA | 19q13.42 | 19 | 54615303 | LILRA1 - LILRB1 | ENSG00000104974 | ENSG00000104972 | 12922 | 1855 | rs7250931-T | rs7250931 | 0 | 7250931 | intergenic_variant | 1 | 0.189949 | 0e+00 | 26.000000 | NA | 0.350791 | [0.29-0.42] unit increase | NR [10004359] | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90162284 | Genome-wide sequencing | ||
2022-02-15 | 35078996 | Gudjonsson A | 2022-01-25 | Nat Commun | www.ncbi.nlm.nih.gov/pubmed/35078996 | A genome-wide association study of serum proteins reveals shared loci with common diseases. | Serum levels of protein LILRB1 | 5,363 Icelandic ancestry individuals | NA | 19q13.42 | 19 | 54642541 | LILRB1-AS1 - LILRB4 | ENSG00000224730 | ENSG00000186818 | 3649 | 1348 | rs145320563-C | rs145320563 | 0 | 145320563 | intergenic_variant | 1 | 0.06073 | 0e+00 | 64.522879 | NA | 0.647523 | [0.57-0.72] unit increase | Illumina [7506463] (imputed) | N | blood protein measurement | http://www.ebi.ac.uk/efo/EFO_0007937 | GCST90088913 | Genome-wide genotyping array | ||
2023-01-10 | 29875488 | Sun BB | 2018-06-06 | Nature | www.ncbi.nlm.nih.gov/pubmed/29875488 | Genomic atlas of the human plasma proteome. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels (LILRB1.5090.49.2) | 3,301 European ancestry individuals | NA | 19q13.42 | 19 | 54643833 | LILRB1-AS1 - LILRB4 | ENSG00000224730 | ENSG00000186818 | 4941 | 56 | rs71195783-CT | rs71195783 | 0 | 71195783 | intergenic_variant | 1 | 0.072 | 0e+00 | 136.000000 | NA | 1.170000 | [-1.07–1.27] unit decrease | Affymetrix [10572788] (imputed) | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90241793 | Genome-wide genotyping array | ||
2022-10-24 | 36168886 | Thareja G | 2022-09-28 | Hum Mol Genet | www.ncbi.nlm.nih.gov/pubmed/36168886 | Differences and commonalities in the genetic architecture of protein quantitative trait loci in European and Arab populations. | Leukocyte immunoglobulin-like receptor subfamily B member 1 levels | 2,935 Qatari ancestry individuals | NA | 19q13.42 | 19 | 54639836 | LILRB1-AS1 - LILRB4 | ENSG00000224730 | ENSG00000186818 | 944 | 4053 | rs369645554-G | rs369645554 | 0 | 369645554 | intergenic_variant | 1 | 0.0120954 | 0e+00 | 12.397940 | NA | 0.773640 | [0.56-0.98] unit increase | NR [10004359] | N | leukocyte immunoglobulin-like receptor subfamily B member 1 measurement | http://www.ebi.ac.uk/efo/EFO_0008208 | GCST90162284 | Genome-wide sequencing |
> summary(birthwt$age)
Min. 1st Qu. Median Mean 3rd Qu. Max. 14.00 19.00 23.00 23.24 26.00 45.00
prueba1<- subset(birthwt, select = c(smoke,bwt))
prueba2<- subset(birthwt, select = c(age,bwt))
prueba3<- subset(birthwt, select = c(ftv,bwt))
View(prueba3)
prueba4 <- prueba3[prueba3$ftv < 2, ]
ftv | bwt | |
---|---|---|
85 | 0 | 2523 |
87 | 1 | 2557 |
89 | 0 | 2600 |
91 | 0 | 2622 |
92 | 1 | 2637 |
93 | 1 | 2637 |
94 | 1 | 2663 |
95 | 0 | 2665 |
96 | 0 | 2722 |
97 | 1 | 2733 |
98 | 0 | 2751 |
100 | 0 | 2769 |
101 | 0 | 2769 |
102 | 0 | 2778 |
104 | 0 | 2807 |
105 | 1 | 2821 |
108 | 1 | 2836 |
109 | 0 | 2863 |
112 | 0 | 2877 |
113 | 0 | 2906 |
115 | 0 | 2920 |
116 | 1 | 2920 |
117 | 1 | 2920 |
118 | 1 | 2948 |
119 | 1 | 2948 |
120 | 1 | 2977 |
121 | 0 | 2977 |
125 | 0 | 2922 |
127 | 1 | 3033 |
130 | 1 | 3062 |
131 | 0 | 3062 |
132 | 0 | 3062 |
133 | 0 | 3062 |
135 | 0 | 3090 |
137 | 0 | 3090 |
138 | 1 | 3100 |
139 | 0 | 3104 |
140 | 0 | 3132 |
142 | 0 | 3175 |
143 | 0 | 3175 |
144 | 0 | 3203 |
145 | 0 | 3203 |
146 | 0 | 3203 |
147 | 0 | 3225 |
148 | 0 | 3225 |
150 | 0 | 3232 |
151 | 0 | 3234 |
154 | 0 | 3260 |
155 | 1 | 3274 |
160 | 1 | 3317 |
162 | 0 | 3317 |
164 | 1 | 3331 |
166 | 0 | 3374 |
167 | 0 | 3374 |
168 | 0 | 3402 |
169 | 1 | 3416 |
172 | 0 | 3444 |
173 | 0 | 3459 |
174 | 1 | 3460 |
175 | 0 | 3473 |
176 | 0 | 3544 |
177 | 0 | 3487 |
179 | 0 | 3544 |
180 | 0 | 3572 |
181 | 0 | 3572 |
182 | 0 | 3586 |
183 | 0 | 3600 |
184 | 1 | 3614 |
185 | 0 | 3614 |
187 | 0 | 3629 |
188 | 0 | 3637 |
189 | 0 | 3643 |
190 | 1 | 3651 |
191 | 1 | 3651 |
192 | 0 | 3651 |
193 | 0 | 3651 |
195 | 1 | 3699 |
196 | 1 | 3728 |
197 | 0 | 3756 |
199 | 0 | 3770 |
200 | 1 | 3770 |
201 | 0 | 3770 |
202 | 0 | 3790 |
203 | 1 | 3799 |
204 | 0 | 3827 |
208 | 1 | 3884 |
210 | 1 | 3912 |
211 | 0 | 3940 |
212 | 1 | 3941 |
213 | 0 | 3941 |
214 | 0 | 3969 |
216 | 1 | 3997 |
217 | 1 | 3997 |
218 | 0 | 4054 |
219 | 1 | 4054 |
220 | 0 | 4111 |
223 | 1 | 4174 |
224 | 0 | 4238 |
225 | 1 | 4593 |
226 | 1 | 4990 |
4 | 0 | 709 |
11 | 0 | 1135 |
13 | 0 | 1330 |
15 | 0 | 1474 |
16 | 0 | 1588 |
17 | 1 | 1588 |
18 | 1 | 1701 |
19 | 0 | 1729 |
20 | 1 | 1790 |
22 | 0 | 1818 |
23 | 0 | 1885 |
24 | 0 | 1893 |
25 | 1 | 1899 |
26 | 0 | 1928 |
29 | 0 | 1936 |
30 | 0 | 1970 |
31 | 0 | 2055 |
32 | 1 | 2055 |
34 | 0 | 2084 |
35 | 0 | 2084 |
36 | 0 | 2100 |
37 | 0 | 2125 |
42 | 1 | 2187 |
43 | 0 | 2187 |
44 | 0 | 2211 |
45 | 0 | 2225 |
46 | 1 | 2240 |
47 | 0 | 2240 |
49 | 0 | 2282 |
50 | 0 | 2296 |
51 | 0 | 2296 |
54 | 0 | 2325 |
56 | 1 | 2353 |
57 | 0 | 2353 |
59 | 1 | 2367 |
60 | 0 | 2381 |
61 | 0 | 2381 |
62 | 0 | 2381 |
63 | 0 | 2410 |
65 | 0 | 2410 |
67 | 1 | 2410 |
69 | 0 | 2424 |
75 | 1 | 2442 |
77 | 0 | 2466 |
78 | 0 | 2466 |
82 | 0 | 2495 |
83 | 0 | 2495 |
anorexia2<- subset(anorexia, select = c (Prewt,Postwt))
View(anorexia2)
kable(anorexia2)
Prewt | Postwt |
---|---|
80.7 | 80.2 |
89.4 | 80.1 |
91.8 | 86.4 |
74.0 | 86.3 |
78.1 | 76.1 |
88.3 | 78.1 |
87.3 | 75.1 |
75.1 | 86.7 |
80.6 | 73.5 |
78.4 | 84.6 |
77.6 | 77.4 |
88.7 | 79.5 |
81.3 | 89.6 |
78.1 | 81.4 |
70.5 | 81.8 |
77.3 | 77.3 |
85.2 | 84.2 |
86.0 | 75.4 |
84.1 | 79.5 |
79.7 | 73.0 |
85.5 | 88.3 |
84.4 | 84.7 |
79.6 | 81.4 |
77.5 | 81.2 |
72.3 | 88.2 |
89.0 | 78.8 |
80.5 | 82.2 |
84.9 | 85.6 |
81.5 | 81.4 |
82.6 | 81.9 |
79.9 | 76.4 |
88.7 | 103.6 |
94.9 | 98.4 |
76.3 | 93.4 |
81.0 | 73.4 |
80.5 | 82.1 |
85.0 | 96.7 |
89.2 | 95.3 |
81.3 | 82.4 |
76.5 | 72.5 |
70.0 | 90.9 |
80.4 | 71.3 |
83.3 | 85.4 |
83.0 | 81.6 |
87.7 | 89.1 |
84.2 | 83.9 |
86.4 | 82.7 |
76.5 | 75.7 |
80.2 | 82.6 |
87.8 | 100.4 |
83.3 | 85.2 |
79.7 | 83.6 |
84.5 | 84.6 |
80.8 | 96.2 |
87.4 | 86.7 |
83.8 | 95.2 |
83.3 | 94.3 |
86.0 | 91.5 |
82.5 | 91.9 |
86.7 | 100.3 |
79.6 | 76.7 |
76.9 | 76.8 |
94.2 | 101.6 |
73.4 | 94.9 |
80.5 | 75.2 |
81.6 | 77.8 |
82.1 | 95.5 |
77.6 | 90.7 |
83.5 | 92.5 |
89.9 | 93.8 |
86.0 | 91.7 |
87.3 | 98.0 |
pulmon1 <- Trat_Pulmon [Trat_Pulmon$Edad > 22, ]
Identificador | Edad | Sexo | Peso | Alt | Fuma | |
---|---|---|---|---|---|---|
1 | I1 | 23 | 1 | 76.5 | 165 | SÍ |
2 | I2 | 24 | 2 | 81.2 | 154 | NO |
5 | I5 | 23 | 1 | 67.3 | 164 | NO |
6 | I6 | 25 | 2 | 78.6 | 175 | NO |
7 | I7 | 26 | 2 | 67.9 | 182 | NO |
8 | I8 | 24 | 2 | 100.2 | 165 | SÍ |
11 | I11 | 23 | 1 | 65.4 | 158 | NO |
12 | I12 | 25 | 2 | 67.5 | 183 | NO |
13 | I13 | 26 | 2 | 87.4 | 184 | SÍ |
14 | I14 | 24 | 2 | 99.7 | 164 | SÍ |
17 | I17 | 25 | 1 | 65.4 | 182 | NO |
18 | I18 | 26 | 2 | 73.7 | 179 | NO |
19 | I19 | 24 | 2 | 85.1 | 165 | SÍ |
21 | I21 | 25 | 1 | 54.8 | 183 | SÍ |
22 | I22 | 27 | 2 | 103.4 | 184 | NO |
23 | I23 | 26 | 1 | 65.8 | 189 | SÍ |
25 | I25 | 29 | 2 | 85.0 | 175 | SÍ |
mi_dato <- Trat_Pulmon$Edad[3]
21
pulmon2<- subset(Trat_Pulmon, Edad<27, c(Identificador, Edad, Sexo, Peso, Fuma))
Kable(pulmon2)
Identificador | Edad | Sexo | Peso | Fuma | |
---|---|---|---|---|---|
1 | I1 | 23 | 1 | 76.5 | SÍ |
2 | I2 | 24 | 2 | 81.2 | NO |
3 | I3 | 21 | 1 | 79.3 | SÍ |
4 | I4 | 22 | 1 | 59.5 | SÍ |
5 | I5 | 23 | 1 | 67.3 | NO |
6 | I6 | 25 | 2 | 78.6 | NO |
7 | I7 | 26 | 2 | 67.9 | NO |
8 | I8 | 24 | 2 | 100.2 | SÍ |
9 | I9 | 21 | 1 | 97.8 | SÍ |
10 | I10 | 22 | 2 | 56.4 | SÍ |
11 | I11 | 23 | 1 | 65.4 | NO |
12 | I12 | 25 | 2 | 67.5 | NO |
13 | I13 | 26 | 2 | 87.4 | SÍ |
14 | I14 | 24 | 2 | 99.7 | SÍ |
15 | I15 | 22 | 1 | 87.6 | SÍ |
16 | I16 | 21 | 1 | 93.4 | SÍ |
17 | I17 | 25 | 1 | 65.4 | NO |
18 | I18 | 26 | 2 | 73.7 | NO |
19 | I19 | 24 | 2 | 85.1 | SÍ |
20 | I20 | 21 | 2 | 61.2 | SÍ |
21 | I21 | 25 | 1 | 54.8 | SÍ |
23 | I23 | 26 | 1 | 65.8 | SÍ |
24 | I24 | 22 | 1 | 71.7 | NO |
> plot(pollo1$Chick, df$weight,
+ main = "Diagrama de Dispersión del Peso",
+ xlab = "Chick",
+ ylab = "weight",
+ col = "blue", pch = 16)
#
#
anorexia <- cbind(anorexia, Diferencia = anorexia$Postwt - anorexia$Prewt)
ano4 <- subset(anorexia, Treat == "Cont" & Diferencia > 0)
kable(ano4)
Treat | Prewt | Postwt | Diferencia | |
---|---|---|---|---|
4 | Cont | 74.0 | 86.3 | 12.3 |
8 | Cont | 75.1 | 86.7 | 11.6 |
10 | Cont | 78.4 | 84.6 | 6.2 |
13 | Cont | 81.3 | 89.6 | 8.3 |
14 | Cont | 78.1 | 81.4 | 3.3 |
15 | Cont | 70.5 | 81.8 | 11.3 |
21 | Cont | 85.5 | 88.3 | 2.8 |
22 | Cont | 84.4 | 84.7 | 0.3 |
23 | Cont | 79.6 | 81.4 | 1.8 |
24 | Cont | 77.5 | 81.2 | 3.7 |
25 | Cont | 72.3 | 88.2 | 15.9 |