Goal: Predict spam emails based on word frequency features

Import Data

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(correlationfunnel)
## Warning: package 'correlationfunnel' was built under R version 4.4.2
## ══ Using correlationfunnel? ════════════════════════════════════════════════════
## You might also be interested in applied data science training for business.
## </> Learn more at - www.business-science.io </>
spam <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2023/2023-08-15/spam.csv')
## Rows: 4601 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): yesno
## dbl (6): crl.tot, dollar, bang, money, n000, make
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean Data

skimr::skim(spam)
Data summary
Name spam
Number of rows 4601
Number of columns 7
_______________________
Column type frequency:
character 1
numeric 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
yesno 0 1 1 1 0 2 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
crl.tot 0 1 283.29 606.35 1 35 95 266.00 15841.00 ▇▁▁▁▁
dollar 0 1 0.08 0.25 0 0 0 0.05 6.00 ▇▁▁▁▁
bang 0 1 0.27 0.82 0 0 0 0.32 32.48 ▇▁▁▁▁
money 0 1 0.09 0.44 0 0 0 0.00 12.50 ▇▁▁▁▁
n000 0 1 0.10 0.35 0 0 0 0.00 5.45 ▇▁▁▁▁
make 0 1 0.10 0.31 0 0 0 0.00 4.54 ▇▁▁▁▁

Issues with Data:

  • No missing values
  • The target variable is yesno (spam or not spam)
  • Numeric variables representing word frequencies
  • No apparent ID variables to drop
  • Need to convert the target variable into a binary format
spam_clean <- spam %>%
  mutate(yesno = as.factor(yesno))

spam_clean
## # A tibble: 4,601 × 7
##    crl.tot dollar  bang money  n000  make yesno
##      <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
##  1     278  0     0.778  0     0     0    y    
##  2    1028  0.18  0.372  0.43  0.43  0.21 y    
##  3    2259  0.184 0.276  0.06  1.16  0.06 y    
##  4     191  0     0.137  0     0     0    y    
##  5     191  0     0.135  0     0     0    y    
##  6      54  0     0      0     0     0    y    
##  7     112  0.054 0.164  0     0     0    y    
##  8      49  0     0      0     0     0    y    
##  9    1257  0.203 0.181  0.15  0     0.15 y    
## 10     749  0.081 0.244  0     0.19  0.06 y    
## # ℹ 4,591 more rows

Explore Data

spam_clean %>% count(yesno)
## # A tibble: 2 × 2
##   yesno     n
##   <fct> <int>
## 1 n      2788
## 2 y      1813
spam_clean %>%
    ggplot(aes(yesno)) +
    geom_bar()

Spam vs. CRL Total

spam_clean %>%
    ggplot(aes(yesno, crl.tot)) +
    geom_boxplot()

Correlation Analysis

# Step 1: Binarize
spam_binarized <- spam_clean %>%
    binarize()

spam_binarized %>% glimpse()
## Rows: 4,601
## Columns: 17
## $ `crl.tot__-Inf_35`   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0…
## $ crl.tot__35_95       <dbl> 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ crl.tot__95_266      <dbl> 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1…
## $ crl.tot__266_Inf     <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0…
## $ `dollar__-Inf_0.052` <dbl> 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1…
## $ dollar__0.052_Inf    <dbl> 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0…
## $ `bang__-Inf_0.315`   <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0…
## $ bang__0.315_Inf      <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1…
## $ money__0             <dbl> 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1…
## $ `money__-OTHER`      <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0…
## $ n000__0              <dbl> 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1…
## $ `n000__-OTHER`       <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0…
## $ make__0              <dbl> 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1…
## $ make__0.1            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ `make__-OTHER`       <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0…
## $ yesno__n             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ yesno__y             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
# Step 2: Correlation
spam_correlation <- spam_binarized %>%
    correlate(yesno__y)

# Step 3: Sort and Analyze Correlations
spam_correlation_sorted <- spam_correlation %>%
    arrange(desc(correlation))

spam_correlation_sorted
## # A tibble: 17 × 3
##    feature bin        correlation
##    <fct>   <chr>            <dbl>
##  1 yesno   y               1     
##  2 dollar  0.052_Inf       0.566 
##  3 bang    0.315_Inf       0.490 
##  4 money   -OTHER          0.475 
##  5 n000    -OTHER          0.419 
##  6 crl.tot 266_Inf         0.299 
##  7 make    -OTHER          0.223 
##  8 crl.tot 95_266          0.145 
##  9 make    0.1             0.0803
## 10 crl.tot 35_95          -0.0818
## 11 make    0              -0.239 
## 12 crl.tot -Inf_35        -0.360 
## 13 n000    0              -0.419 
## 14 money   0              -0.475 
## 15 bang    -Inf_0.315     -0.490 
## 16 dollar  -Inf_0.052     -0.566 
## 17 yesno   n              -1
# Step 4: Plot
spam_correlation_sorted %>%
    correlationfunnel::plot_correlation_funnel()

Summary of Findings

The strongest predictors of spam emails include: * Variables with the highest correlation to yesno__y * Features related to dollar signs, exclamation marks, and certain word frequencies

Given the strength of these correlations, we have a solid set of predictors for building a classification model.