\[ Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk} \]
dengan:
\[
H_0 : \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0 \quad
(\textit{Perbedaan jenis mesin tidak berpengaruh terhadap kekuatan
produk})
\] \[
H_1 : \text{paling sedikit ada satu } i \text{ dimana } \alpha_i \neq 0
\quad (\textit{Perbedaan jenis mesin berpengaruh terhadap kekuatan
produk})
\]
### 2. Pengaruh Utama Faktor B (Jenis Operator)
\[ H_0 : \beta_1 = \beta_2 = \beta_3 = 0 \quad (\textit{Perbedaan jenis operator tidak berpengaruh terhadap kekuatan produk}) \]
\[ H_1 : \text{paling sedikit ada satu } j \text{ dimana } \beta_j \neq 0 \quad (\textit{Perbedaan jenis operator berpengaruh terhadap kekuatan produk}) \]
\[ H_0 : (\alpha\beta)_{11} = (\alpha\beta)_{12} = \dots = (\alpha\beta)_{ab} = 0 \quad (\textit{Interaksi dari perbedaan jenis mesin dan perbedaan jenis operator tidak berpengaruh terhadap kekuatan produk}) \]
\[
H_1 : \text{paling sedikit ada sepasang } (i,j) \text{ dimana }
(\alpha\beta)_{ij} \neq 0 \quad (\textit{Interaksi dari perbedaan jenis
mesin dan perbedaan jenis operator berpengaruh terhadap kekuatan
produk})
\]
# Dataframe
data <- data.frame(
Operator = rep(rep(1:3, each = 2), times = 4), # Operator diulang 2x per mesin
Mesin = rep(1:4, each = 6), # Mesin diulang untuk setiap kelompok operator
Kekuatan = c(
109, 110, 110, 112, 116, 114, # Mesin 1
110, 115, 110, 111, 112, 115, # Mesin 2
108, 109, 111, 109, 114, 119, # Mesin 3
110, 108, 114, 112, 120, 117 ) ) # Mesin 4
data
## Operator Mesin Kekuatan
## 1 1 1 109
## 2 1 1 110
## 3 2 1 110
## 4 2 1 112
## 5 3 1 116
## 6 3 1 114
## 7 1 2 110
## 8 1 2 115
## 9 2 2 110
## 10 2 2 111
## 11 3 2 112
## 12 3 2 115
## 13 1 3 108
## 14 1 3 109
## 15 2 3 111
## 16 2 3 109
## 17 3 3 114
## 18 3 3 119
## 19 1 4 110
## 20 1 4 108
## 21 2 4 114
## 22 2 4 112
## 23 3 4 120
## 24 3 4 117
data$Mesin<-as.factor(data$Mesin)
data$Operator<-as.factor(data$Operator)
Anova1<-aov(Kekuatan~Mesin*Operator,data=data)
summary(Anova1)
## Df Sum Sq Mean Sq F value Pr(>F)
## Mesin 3 12.46 4.15 1.095 0.388753
## Operator 2 160.33 80.17 21.143 0.000117 ***
## Mesin:Operator 6 44.67 7.44 1.963 0.150681
## Residuals 12 45.50 3.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qf(0.05,3,12,lower.tail = FALSE)
## [1] 3.490295
qf(0.05,2,12,lower.tail = FALSE)
## [1] 3.885294
qf(0.05,6,12,lower.tail = FALSE)
## [1] 2.99612
options(repos = c(CRAN = "https://cloud.r-project.org/"))
install.packages("phia")
## Installing package into 'C:/Users/M S I/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'phia' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\M S I\AppData\Local\Temp\RtmpW6UcLb\downloaded_packages
library (phia)
## Warning: package 'phia' was built under R version 4.3.3
## Loading required package: car
## Warning: package 'car' was built under R version 4.3.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.3
model1<-lm(Kekuatan~Mesin*Operator,data=data)
interaksi1<-interactionMeans(model1)
plot(interaksi1)
# Soal NO2
\[ Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk} \]
dengan:
\[ H_0 : N_1 = N_2 = N_3 = N_4 = N_5 = 0 (\text{Perbedaan nitrogen tidak berpengaruh pada respon}) \]
\[ H_1 : \text{paling sedikit ada satu } i \text{ di mana } \alpha_i \neq 0 (\text{Perbedaan nitrogen berpengaruh pada respon}) \]
\[ H_0 : V_1 = V_2 = V_3 = 0 (\text{Perbedaan varietas tidak berpengaruh pada respon}) \]
\[ H_1 : \text{paling sedikit ada satu } i \text{ di mana } V_j \neq 0 (\text{Perbedaan varietas berpengaruh pada respon}) \]
\[ H_0 : (NV)11 = (NV)12 = (NV)13 = \dots = (NV)53 = 0 (\text{Interaksi nitrogen dan varietas tidak berpengaruh pada respon}) \]
varietas <- rep(c("V1", "V2", "V3"), each = 15)
nitrogen <- rep(c("N1", "N2", "N3", "N4", "N5"), 9)
ulangan <- rep(rep(c(1, 2, 3), each = 5), 9)
respon <- c(9, 12, 13, 18, 11,
9, 13, 15, 19, 14,
10, 12, 14, 21, 12,
9, 11, 13, 16, 19,
8, 9, 15, 13, 16,
8, 9, 11, 11, 15,
9, 14, 13, 14, 12,
10, 12, 14, 15, 11,
7, 10, 14, 14, 13)
data2 <- data.frame(varietas, nitrogen, ulangan, respon)
data2
## varietas nitrogen ulangan respon
## 1 V1 N1 1 9
## 2 V1 N2 1 12
## 3 V1 N3 1 13
## 4 V1 N4 1 18
## 5 V1 N5 1 11
## 6 V1 N1 2 9
## 7 V1 N2 2 13
## 8 V1 N3 2 15
## 9 V1 N4 2 19
## 10 V1 N5 2 14
## 11 V1 N1 3 10
## 12 V1 N2 3 12
## 13 V1 N3 3 14
## 14 V1 N4 3 21
## 15 V1 N5 3 12
## 16 V2 N1 1 9
## 17 V2 N2 1 11
## 18 V2 N3 1 13
## 19 V2 N4 1 16
## 20 V2 N5 1 19
## 21 V2 N1 2 8
## 22 V2 N2 2 9
## 23 V2 N3 2 15
## 24 V2 N4 2 13
## 25 V2 N5 2 16
## 26 V2 N1 3 8
## 27 V2 N2 3 9
## 28 V2 N3 3 11
## 29 V2 N4 3 11
## 30 V2 N5 3 15
## 31 V3 N1 1 9
## 32 V3 N2 1 14
## 33 V3 N3 1 13
## 34 V3 N4 1 14
## 35 V3 N5 1 12
## 36 V3 N1 2 10
## 37 V3 N2 2 12
## 38 V3 N3 2 14
## 39 V3 N4 2 15
## 40 V3 N5 2 11
## 41 V3 N1 3 7
## 42 V3 N2 3 10
## 43 V3 N3 3 14
## 44 V3 N4 3 14
## 45 V3 N5 3 13
## 46 V1 N1 1 9
## 47 V1 N2 1 12
## 48 V1 N3 1 13
## 49 V1 N4 1 18
## 50 V1 N5 1 11
## 51 V1 N1 2 9
## 52 V1 N2 2 13
## 53 V1 N3 2 15
## 54 V1 N4 2 19
## 55 V1 N5 2 14
## 56 V1 N1 3 10
## 57 V1 N2 3 12
## 58 V1 N3 3 14
## 59 V1 N4 3 21
## 60 V1 N5 3 12
## 61 V2 N1 1 9
## 62 V2 N2 1 11
## 63 V2 N3 1 13
## 64 V2 N4 1 16
## 65 V2 N5 1 19
## 66 V2 N1 2 8
## 67 V2 N2 2 9
## 68 V2 N3 2 15
## 69 V2 N4 2 13
## 70 V2 N5 2 16
## 71 V2 N1 3 8
## 72 V2 N2 3 9
## 73 V2 N3 3 11
## 74 V2 N4 3 11
## 75 V2 N5 3 15
## 76 V3 N1 1 9
## 77 V3 N2 1 14
## 78 V3 N3 1 13
## 79 V3 N4 1 14
## 80 V3 N5 1 12
## 81 V3 N1 2 10
## 82 V3 N2 2 12
## 83 V3 N3 2 14
## 84 V3 N4 2 15
## 85 V3 N5 2 11
## 86 V3 N1 3 7
## 87 V3 N2 3 10
## 88 V3 N3 3 14
## 89 V3 N4 3 14
## 90 V3 N5 3 13
## 91 V1 N1 1 9
## 92 V1 N2 1 12
## 93 V1 N3 1 13
## 94 V1 N4 1 18
## 95 V1 N5 1 11
## 96 V1 N1 2 9
## 97 V1 N2 2 13
## 98 V1 N3 2 15
## 99 V1 N4 2 19
## 100 V1 N5 2 14
## 101 V1 N1 3 10
## 102 V1 N2 3 12
## 103 V1 N3 3 14
## 104 V1 N4 3 21
## 105 V1 N5 3 12
## 106 V2 N1 1 9
## 107 V2 N2 1 11
## 108 V2 N3 1 13
## 109 V2 N4 1 16
## 110 V2 N5 1 19
## 111 V2 N1 2 8
## 112 V2 N2 2 9
## 113 V2 N3 2 15
## 114 V2 N4 2 13
## 115 V2 N5 2 16
## 116 V2 N1 3 8
## 117 V2 N2 3 9
## 118 V2 N3 3 11
## 119 V2 N4 3 11
## 120 V2 N5 3 15
## 121 V3 N1 1 9
## 122 V3 N2 1 14
## 123 V3 N3 1 13
## 124 V3 N4 1 14
## 125 V3 N5 1 12
## 126 V3 N1 2 10
## 127 V3 N2 2 12
## 128 V3 N3 2 14
## 129 V3 N4 2 15
## 130 V3 N5 2 11
## 131 V3 N1 3 7
## 132 V3 N2 3 10
## 133 V3 N3 3 14
## 134 V3 N4 3 14
## 135 V3 N5 3 13
data2$varietas <- as.factor(data2$varietas)
data2$nitrogen <- as.factor(data2$nitrogen)
anova2 = aov(respon~varietas*nitrogen, data=data2)
summary(anova2)
## Df Sum Sq Mean Sq F value Pr(>F)
## varietas 2 50.8 25.40 16.57 4.44e-07 ***
## nitrogen 4 747.1 186.77 121.80 < 2e-16 ***
## varietas:nitrogen 8 304.5 38.07 24.83 < 2e-16 ***
## Residuals 120 184.0 1.53
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
varietasnya = qf(0.05,2,120,lower.tail = FALSE)
nitrogennya = qf(0.05,4,120,lower.tail = FALSE)
interaksi = qf(0.05,8,120, lower.tail = FALSE)
varietasnya
## [1] 3.071779
nitrogennya
## [1] 2.447237
interaksi
## [1] 2.016426
library(phia)
model2<-lm(respon~varietas*nitrogen,data=data2)
interaksi2<-interactionMeans(model2)
plot(interaksi2)