install.packages(“ISLR”) library(ISLR) # Load ISLR package
data(Auto)
str(Auto)
sapply(Auto, class)
qualitative_vars <- c(“name”) # Only ‘name’ is qualitative
quantitative_vars <- setdiff(names(Auto), qualitative_vars)
cat(“Quantitative Variables:”, quantitative_vars, “”) cat(“Qualitative Variables:”, qualitative_vars, “”)
sapply(Auto[, quantitative_vars, drop=FALSE], range)
means <- sapply(Auto[, quantitative_vars, drop=FALSE], mean) print(“Means of Quantitative Variables:”) print(means)
std_devs <- sapply(Auto[, quantitative_vars, drop=FALSE], sd) print(“Standard Deviations of Quantitative Variables:”) print(std_devs)
Auto_subset <- Auto[-(10:85), ]
new_range <- sapply(Auto_subset[, quantitative_vars, drop=FALSE], range) new_means <- sapply(Auto_subset[, quantitative_vars, drop=FALSE], mean) new_std_devs <- sapply(Auto_subset[, quantitative_vars, drop=FALSE], sd)
print(“Range after removing observations 10-85:”) print(new_range)
print(“Means after removing observations 10-85:”) print(new_means)
print(“Standard Deviations after removing observations 10-85:”) print(new_std_devs)
install.packages(“ggplot2”) # Install if needed library(ggplot2)
pairs(Auto[, quantitative_vars], main=“Scatterplot Matrix of Quantitative Variables”)
ggplot(Auto, aes(x=horsepower, y=mpg)) + geom_point() + ggtitle(“Horsepower vs MPG”) + theme_minimal()
correlation_matrix <- cor(Auto[, quantitative_vars]) print(“Correlation of mpg with other variables:”) print(correlation_matrix[“mpg”, ])
model <- lm(mpg ~ . -name, data=Auto) # Excluding ‘name’ as it’s qualitative summary(model) # Show regression results
ggplot(Auto, aes(x=horsepower, y=mpg)) + geom_point() + geom_smooth(method=“lm”, col=“red”) + ggtitle(“Linear Relationship Between Horsepower and MPG”) + theme_minimal()