Primary results
Induction task
There is a marginal effect of condition (\(\chi\)(14)=23.10, p=.059) on the inferred prevalence of novel features.
The raw count of generics (t(142)=3.82, p=.00020) and the proportion of generics to specifics (t(132)=3.17, p=.0019) each independently predicted the inferred prevalence of novel features. There was also a marginal effect of the raw count of specifics (t(142)=-1.84, p=.067).
When entered into the same model, raw count of generics predicted prevalence judgments (t(131)=2.22, p=.028), while proportion of generics to specifics did not (t(131)=0.03, p=.98).
When entered into the same model, raw count of generics predicted prevalence judgments (t(141)=3.30, p=.0012), while raw count of specifics did not (t(141)=-0.077, p=.94).
# raw number of generics
lmer(prevalence ~ condition + (1|participant) + (1|test_feature),
data = data_tidy) %>%
Anova()
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: prevalence
## Chisq Df Pr(>Chisq)
## condition 23.099 14 0.05868 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# raw number of generics
lmer(prevalence ~ num_generics + (1|participant) + (1|test_feature),
data = data_tidy) %>%
summary()
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: prevalence ~ num_generics + (1 | participant) + (1 | test_feature)
## Data: data_tidy
##
## REML criterion at convergence: 21387.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6809 -0.6343 -0.0877 0.5767 3.4641
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 384.03 19.597
## test_feature (Intercept) 79.95 8.942
## Residual 527.36 22.964
## Number of obs: 2304, groups: participant, 144; test_feature, 16
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 31.2266 3.3427 59.7534 9.342 0.000000000000274 ***
## num_generics 1.2912 0.3379 141.9999 3.822 0.000198 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## num_genercs -0.542
# raw number of specifics
lmer(prevalence ~ num_specifics + (1|participant) + (1|test_feature),
data = data_tidy) %>%
summary()
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: prevalence ~ num_specifics + (1 | participant) + (1 | test_feature)
## Data: data_tidy
##
## REML criterion at convergence: 21398
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6567 -0.6341 -0.0871 0.5782 3.4644
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 416.14 20.400
## test_feature (Intercept) 79.95 8.942
## Residual 527.36 22.964
## Number of obs: 2304, groups: participant, 144; test_feature, 16
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 41.5584 3.3949 62.6346 12.241 <0.0000000000000002 ***
## num_specifics -0.6460 0.3499 142.0002 -1.846 0.0669 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## num_specfcs -0.544
# proportion of generics
lmer(prevalence ~ prop_generics + (1|participant) + (1|test_feature),
data = data_tidy) %>%
summary()
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: prevalence ~ prop_generics + (1 | participant) + (1 | test_feature)
## Data: data_tidy
##
## REML criterion at convergence: 19888.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6643 -0.6325 -0.0764 0.5701 3.4690
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 406.55 20.163
## test_feature (Intercept) 85.83 9.265
## Residual 522.59 22.860
## Number of obs: 2144, groups: participant, 134; test_feature, 16
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 30.936 3.729 72.956 8.297 0.00000000000391 ***
## prop_generics 14.420 4.547 132.000 3.171 0.00189 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## prop_genrcs -0.615
# raw number vs proportion of generics
lmer(prevalence ~ num_generics + prop_generics + (1|participant) + (1|test_feature),
data = data_tidy) %>%
summary()
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: prevalence ~ num_generics + prop_generics + (1 | participant) +
## (1 | test_feature)
## Data: data_tidy
##
## REML criterion at convergence: 19882.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6840 -0.6267 -0.0777 0.5716 3.4716
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 393.83 19.845
## test_feature (Intercept) 85.83 9.265
## Residual 522.59 22.860
## Number of obs: 2144, groups: participant, 134; test_feature, 16
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 30.1377 3.7127 72.0231 8.117 0.00000000000924 ***
## num_generics 1.3831 0.6225 130.9999 2.222 0.028 *
## prop_generics 0.2052 7.8109 130.9999 0.026 0.979
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) nm_gnr
## num_genercs -0.097
## prop_genrcs -0.270 -0.819
# raw number of generics vs raw number of specifics
lmer(prevalence ~ num_generics + num_specifics + (1|participant) + (1|test_feature),
data = data_tidy) %>%
summary()
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: prevalence ~ num_generics + num_specifics + (1 | participant) +
## (1 | test_feature)
## Data: data_tidy
##
## REML criterion at convergence: 21387.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6818 -0.6340 -0.0874 0.5767 3.4649
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 386.97 19.672
## test_feature (Intercept) 79.95 8.942
## Residual 527.36 22.964
## Number of obs: 2304, groups: participant, 144; test_feature, 16
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 31.46229 4.52591 119.14483 6.952 0.000000000207 ***
## num_generics 1.27670 0.38734 140.99980 3.296 0.00124 **
## num_specifics -0.02993 0.38652 140.99980 -0.077 0.93839
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) nm_gnr
## num_genercs -0.677
## num_specfcs -0.673 0.484