Your Name
2025-03-03
dbinom()
: Probability mass
functionpbinom()
: Cumulative distribution
functionqbinom()
: Quantile functionrbinom()
: Random number
generationThese functions are essential for working with the binomial distribution in R.
dbinom()
: Probability Mass Functionk
successes in n
trials.dbinom(k, size = n, prob = p)
k <- 0:10
n <- 10
p <- 0.5
probabilities <- dbinom(k, size = n, prob = p)
barplot(probabilities, names.arg = k, main = "dbinom(): Binomial Probability Mass Function", xlab = "Number of Successes (k)", ylab = "Probability", col = "lightblue")
pbinom()
: Cumulative Distribution Functionk
successes in n
trials.pbinom(q, size = n, prob = p)
k <- 0:10
n <- 10
p <- 0.5
cumulative_probabilities <- pbinom(k, size = n, prob = p)
plot(k, cumulative_probabilities, type = "s", main = "pbinom(): Binomial Cumulative Distribution Function", xlab = "Number of Successes (k)", ylab = "Cumulative Probability", col = "blue")
qbinom()
: Quantile Functionk
such that the cumulative probability is at least
p
.qbinom(p, size = n, prob = p)
probabilities <- seq(0, 1, length.out = 100)
n <- 10
p <- 0.5
quantiles <- qbinom(probabilities, size = n, prob = p)
plot(probabilities, quantiles, type = "s", main = "qbinom(): Binomial Quantile Function", xlab = "Probability", ylab = "Quantile (k)", col = "darkgreen")
rbinom()
: Random Number Generationrbinom(n, size = n, prob = p)
set.seed(123)
random_numbers <- rbinom(1000, size = 10, prob = 0.5)
hist(random_numbers, breaks = seq(-0.5, 10.5, by = 1), main = "rbinom(): Random Numbers from Binomial Distribution", xlab = "Number of Successes (k)", col = "lightgreen")
dbinom()
: Gives the probability of
exactly k
successes.pbinom()
: Gives the cumulative
probability of up to k
successes.qbinom()
: Finds the smallest
k
for a given cumulative probability.rbinom()
: Generates random numbers
from a binomial distribution.These functions are fundamental for working with binomial experiments in R.