1. load libraries
3. Create the EnhancedVolcano plot
library(ggplot2)
library(EnhancedVolcano)
library(dplyr)
# Define the output directory
output_dir <- "L1_vs_L2"
dir.create(output_dir, showWarnings = FALSE)
# First Volcano Plot
p1 <- EnhancedVolcano(
Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_log2FC",
y = "p_val_adj",
title = "Malignant_CD4Tcells_vs_Normal_CD4Tcells",
pCutoff = 1e-4,
FCcutoff = 1.0
)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...
print(p1) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot1.png"), plot = p1, width = 14, height = 10, dpi = 300)
# Second Volcano Plot with selected genes
p2 <- EnhancedVolcano(
Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_log2FC",
y = "p_val_adj",
selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9',
'CD80', 'IL1B', 'RPS4Y1',
'IL7R', 'TCF7', 'MKI67', 'CD70',
'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9',
'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL',
'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4',
'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
xlab = bquote(~Log[2]~ 'fold change'),
pCutoff = 1e-4,
FCcutoff = 1.5,
pointSize = 3.0,
labSize = 5.0,
boxedLabels = TRUE,
colAlpha = 0.5,
legendPosition = 'right',
legendLabSize = 10,
legendIconSize = 4.0,
drawConnectors = TRUE,
widthConnectors = 0.5,
colConnectors = 'grey50',
arrowheads = FALSE,
max.overlaps = 30
)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...
print(p2) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot2.png"), plot = p2, width = 14, height = 10, dpi = 300)
# Filtering genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
arrange(p_val_adj, desc(abs(avg_log2FC)))
# Third Volcano Plot - Filtering by p-value and logFC
p3 <- EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
x = "avg_log2FC",
y = "p_val_adj",
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
pCutoff = 1e-4,
FCcutoff = 1.0,
legendPosition = 'right',
labCol = 'black',
labFace = 'bold',
boxedLabels = FALSE, # Remove boxed labels
pointSize = 3.0,
labSize = 5.0,
col = c('grey70', 'black', 'blue', 'red'), # Customize point colors
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0]
)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...
print(p3) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot3.png"), plot = p3, width = 14, height = 10, dpi = 300)
# Fourth Volcano Plot - More refined filtering
p4 <- EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 1e-4 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
x = "avg_log2FC",
y = "p_val_adj",
title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
subtitle = "Highlighting differentially expressed genes",
pCutoff = 1e-4,
FCcutoff = 1.0,
legendPosition = 'right',
colAlpha = 0.8, # Slight transparency for non-significant points
col = c('grey70', 'black', 'blue', 'red'), # Custom color scheme
gridlines.major = TRUE,
gridlines.minor = FALSE,
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0]
)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...
print(p4) # Display in notebook

ggsave(filename = file.path(output_dir, "VolcanoPlot4.png"), plot = p4, width = 14, height = 10, dpi = 300)
message("All volcano plots have been displayed and saved successfully in the 'L1_vs_L2' folder.")
All volcano plots have been displayed and saved successfully in the 'L1_vs_L2' folder.
4. Enrichment Analysis-1
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)
library(DOSE) # For GSEA analysis
library(ggplot2) # Ensure ggplot2 is available for plotting
# Define threshold for differential expression selection (modified thresholds)
logFC_up_threshold <- 1 # Upregulated logFC threshold
logFC_down_threshold <- -1.5 # Downregulated logFC threshold
pval_threshold <- 1e-4 # p-value threshold as specified
# Load your differential expression results (modify based on actual data structure)
# Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("Your_DE_Results_File.csv")
# Select upregulated and downregulated genes
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[
Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > logFC_up_threshold &
Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < pval_threshold, ]
downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[
Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < logFC_down_threshold &
Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < pval_threshold, ]
# Check for missing genes (NAs) in the gene column and remove them
upregulated_genes <- na.omit(upregulated_genes)
downregulated_genes <- na.omit(downregulated_genes)
# Save upregulated and downregulated gene results to CSV
write.csv(upregulated_genes, "L1_vs_L2/upregulated_genes.csv", row.names = FALSE)
write.csv(downregulated_genes, "L1_vs_L2/downregulated_genes.csv", row.names = FALSE)
# Convert gene symbols to Entrez IDs for enrichment analysis, with checks for missing values
upregulated_entrez <- bitr(upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 3.45% of input gene IDs are fail to map...
downregulated_entrez <- bitr(downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 3.78% of input gene IDs are fail to map...
# Check for missing Entrez IDs
missing_upregulated <- upregulated_genes$gene[is.na(upregulated_entrez$ENTREZID)]
missing_downregulated <- downregulated_genes$gene[is.na(downregulated_entrez$ENTREZID)]
# Print out the missing gene symbols for debugging
cat("Missing upregulated genes:\n", missing_upregulated, "\n")
Missing upregulated genes:
cat("Missing downregulated genes:\n", missing_downregulated, "\n")
Missing downregulated genes:
# Remove genes that couldn't be mapped to Entrez IDs
upregulated_entrez <- upregulated_entrez$ENTREZID[!is.na(upregulated_entrez$ENTREZID)]
downregulated_entrez <- downregulated_entrez$ENTREZID[!is.na(downregulated_entrez$ENTREZID)]
# Define a function to safely run enrichment, plot results, and save them
safe_enrichGO <- function(gene_list, title, filename) {
if (length(gene_list) > 0) {
result <- enrichGO(gene = gene_list, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0("L1_vs_L2/", gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0("L1_vs_L2/", filename), row.names = FALSE)
} else {
message(paste("No significant enrichment found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichKEGG <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichKEGG(gene = entrez_list, organism = "hsa", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0("L1_vs_L2/", gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0("L1_vs_L2/", filename), row.names = FALSE)
} else {
message(paste("No significant KEGG pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
safe_enrichReactome <- function(entrez_list, title, filename) {
if (length(entrez_list) > 0) {
result <- enrichPathway(gene = entrez_list, organism = "human", pvalueCutoff = 0.05)
if (!is.null(result) && nrow(as.data.frame(result)) > 0) {
p <- dotplot(result, showCategory = 10, title = title)
print(p)
ggsave(paste0("L1_vs_L2/", gsub(".csv", "_dotplot.png", filename)), plot = p, width = 8, height = 6)
write.csv(as.data.frame(result), file = paste0("L1_vs_L2/", filename), row.names = FALSE)
} else {
message(paste("No significant Reactome pathways found for:", title))
}
} else {
message(paste("No genes found for:", title))
}
}
# Perform enrichment analyses, generate plots, and save results
safe_enrichGO(upregulated_genes$gene, "GO Enrichment for Upregulated Genes", "upregulated_GO_results.csv")

safe_enrichGO(downregulated_genes$gene, "GO Enrichment for Downregulated Genes", "downregulated_GO_results.csv")

safe_enrichKEGG(upregulated_entrez, "KEGG Pathway Enrichment for Upregulated Genes", "upregulated_KEGG_results.csv")
Reading KEGG annotation online: "https://rest.kegg.jp/link/hsa/pathway"...
Reading KEGG annotation online: "https://rest.kegg.jp/list/pathway/hsa"...

safe_enrichKEGG(downregulated_entrez, "KEGG Pathway Enrichment for Downregulated Genes", "downregulated_KEGG_results.csv")

safe_enrichReactome(upregulated_entrez, "Reactome Pathway Enrichment for Upregulated Genes", "upregulated_Reactome_results.csv")

safe_enrichReactome(downregulated_entrez, "Reactome Pathway Enrichment for Downregulated Genes", "downregulated_Reactome_results.csv")

NA
NA
4.2. Enrichment Analysis-2-Hallmark
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", category = "H") # "H" is for Hallmark gene sets
# Convert gene symbols to uppercase for consistency
upregulated_genes$gene <- toupper(upregulated_genes$gene)
downregulated_genes$gene <- toupper(downregulated_genes$gene)
# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(downregulated_genes$gene, hallmark_sets$gene_symbol)
# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 113
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 179
# Define the output folder where the results will be saved
output_folder <- "L1_vs_L2/"
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
# Perform enrichment analysis for upregulated genes using Hallmark gene sets
hallmark_up <- enricher(gene = upregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
# Visualize results if available
up_dotplot <- dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
# Display the plot in the notebook
print(up_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_upregulated_dotplot.png"), plot = up_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_up), file = paste0(output_folder, "hallmark_upregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for upregulated genes.\n")
}
} else {
cat("No upregulated genes overlap with Hallmark gene sets.\n")
}

if (length(downregulated_in_hallmark) > 0) {
# Perform enrichment analysis for downregulated genes using Hallmark gene sets
hallmark_down <- enricher(gene = downregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
# Visualize results if available
down_dotplot <- dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
# Display the plot in the notebook
print(down_dotplot)
# Save the dotplot to a PNG file
ggsave(paste0(output_folder, "hallmark_downregulated_dotplot.png"), plot = down_dotplot, width = 10, height = 8)
# Optionally, save the results as CSV
write.csv(as.data.frame(hallmark_down), file = paste0(output_folder, "hallmark_downregulated_enrichment.csv"), row.names = FALSE)
} else {
cat("No significant enrichment found for downregulated genes.\n")
}
} else {
cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
LS0tCnRpdGxlOiAiR2VuZSBFbnJpY2htZW50IEFuYWx5c2lzIChMMV92c19MMilfb25fRmlsdGVyZWRfbWVhbkV4cCIKYXV0aG9yOiBOYXNpciBNYWhtb29kIEFiYmFzaQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICAjcm1kZm9ybWF0czo6cmVhZHRoZWRvd24KICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKLS0tCgojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQpzdXBwcmVzc1BhY2thZ2VTdGFydHVwTWVzc2FnZXMoewpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShTZXVyYXRPYmplY3QpCmxpYnJhcnkoU2V1cmF0RGF0YSkKbGlicmFyeShwYXRjaHdvcmspCmxpYnJhcnkoaGFybW9ueSkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGNvd3Bsb3QpCmxpYnJhcnkocmV0aWN1bGF0ZSkKbGlicmFyeShBemltdXRoKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KFJ0c25lKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ3JpZEV4dHJhKQpsaWJyYXJ5KEVuaGFuY2VkVm9sY2FubykKICAKfSkKYGBgCgojIDIuIFBlcmZvcm0gREUgYW5hbHlzaXMgdXNpbmcgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIGdlbmVzCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgpNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgPC0gcmVhZC5jc3YoImNvbXBhcmlzb25fTDFfdnNfTDJfd2l0aF9tZWFuX2V4cHJlc3Npb25fZmlsdGVyZWQuY3N2IiwgaGVhZGVyID0gVCkKYGBgCgojIDMuIENyZWF0ZSB0aGUgRW5oYW5jZWRWb2xjYW5vIHBsb3QKYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCmxpYnJhcnkoZHBseXIpCgojIERlZmluZSB0aGUgb3V0cHV0IGRpcmVjdG9yeQpvdXRwdXRfZGlyIDwtICJMMV92c19MMiIKZGlyLmNyZWF0ZShvdXRwdXRfZGlyLCBzaG93V2FybmluZ3MgPSBGQUxTRSkKCiMgRmlyc3QgVm9sY2FubyBQbG90CnAxIDwtIEVuaGFuY2VkVm9sY2FubygKICBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMsCiAgbGFiID0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGdlbmUsCiAgeCA9ICJhdmdfbG9nMkZDIiwKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIiwKICBwQ3V0b2ZmID0gMWUtNCwKICBGQ2N1dG9mZiA9IDEuMAopCnByaW50KHAxKSAgIyBEaXNwbGF5IGluIG5vdGVib29rCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRwdXRfZGlyLCAiVm9sY2Fub1Bsb3QxLnBuZyIpLCBwbG90ID0gcDEsIHdpZHRoID0gMTQsIGhlaWdodCA9IDEwLCBkcGkgPSAzMDApCgojIFNlY29uZCBWb2xjYW5vIFBsb3Qgd2l0aCBzZWxlY3RlZCBnZW5lcwpwMiA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLCAKICBsYWIgPSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSwKICB4ID0gImF2Z19sb2cyRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgc2VsZWN0TGFiID0gYygnRVBDQU0nLCAnQkNBVDEnLCAnS0lSM0RMMicsICdGT1hNMScsICdUV0lTVDEnLCAnVE5GU0Y5JywgCiAgICAgICAgICAgICAgICAnQ0Q4MCcsICAnSUwxQicsICdSUFM0WTEnLCAKICAgICAgICAgICAgICAgICdJTDdSJywgJ1RDRjcnLCAgJ01LSTY3JywgJ0NENzAnLCAKICAgICAgICAgICAgICAgICdJTDJSQScsJ1RSQlY2LTInLCAnVFJCVjEwLTMnLCAnVFJCVjQtMicsICdUUkJWOScsICdUUkJWNy05JywgCiAgICAgICAgICAgICAgICAnVFJBVjEyLTEnLCAnQ0Q4QicsICdGQ0dSM0EnLCAnR05MWScsICdGT1hQMycsICdTRUxMJywgCiAgICAgICAgICAgICAgICAnR0lNQVAxJywgJ1JJUE9SMicsICdMRUYxJywgJ0hPWEM5JywgJ1NQNScsCiAgICAgICAgICAgICAgICAnQ0NMMTcnLCAnRVRWNCcsICdUSFkxJywgJ0ZPWEEyJywgJ0lUR0FEJywgJ1MxMDBQJywgJ1RCWDQnLCAKICAgICAgICAgICAgICAgICdJRDEnLCAnWENMMScsICdTT1gyJywgJ0NEMjcnLCAnQ0QyOCcsJ1BMUzMnLCdDRDcwJywnUkFCMjUnICwgJ1RSQlYyNycsICdUUkJWMicpLAogIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyhjZWxsIGxpbmVzKSB2cyBub3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHhsYWIgPSBicXVvdGUofkxvZ1syXX4gJ2ZvbGQgY2hhbmdlJyksCiAgcEN1dG9mZiA9IDFlLTQsCiAgRkNjdXRvZmYgPSAxLjUsIAogIHBvaW50U2l6ZSA9IDMuMCwKICBsYWJTaXplID0gNS4wLAogIGJveGVkTGFiZWxzID0gVFJVRSwKICBjb2xBbHBoYSA9IDAuNSwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsCiAgbGVnZW5kTGFiU2l6ZSA9IDEwLAogIGxlZ2VuZEljb25TaXplID0gNC4wLAogIGRyYXdDb25uZWN0b3JzID0gVFJVRSwKICB3aWR0aENvbm5lY3RvcnMgPSAwLjUsCiAgY29sQ29ubmVjdG9ycyA9ICdncmV5NTAnLAogIGFycm93aGVhZHMgPSBGQUxTRSwKICBtYXgub3ZlcmxhcHMgPSAzMAopCnByaW50KHAyKSAgIyBEaXNwbGF5IGluIG5vdGVib29rCmdnc2F2ZShmaWxlbmFtZSA9IGZpbGUucGF0aChvdXRwdXRfZGlyLCAiVm9sY2Fub1Bsb3QyLnBuZyIpLCBwbG90ID0gcDIsIHdpZHRoID0gMTQsIGhlaWdodCA9IDEwLCBkcGkgPSAzMDApCgojIEZpbHRlcmluZyBnZW5lcwpmaWx0ZXJlZF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgJT4lCiAgYXJyYW5nZShwX3ZhbF9hZGosIGRlc2MoYWJzKGF2Z19sb2cyRkMpKSkKCiMgVGhpcmQgVm9sY2FubyBQbG90IC0gRmlsdGVyaW5nIGJ5IHAtdmFsdWUgYW5kIGxvZ0ZDCnAzIDwtIEVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAxZS00ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMCwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZzJGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICBwQ3V0b2ZmID0gMWUtNCwKICBGQ2N1dG9mZiA9IDEuMCwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsIAogIGxhYkNvbCA9ICdibGFjaycsCiAgbGFiRmFjZSA9ICdib2xkJywKICBib3hlZExhYmVscyA9IEZBTFNFLCAgIyBSZW1vdmUgYm94ZWQgbGFiZWxzCiAgcG9pbnRTaXplID0gMy4wLAogIGxhYlNpemUgPSA1LjAsCiAgY29sID0gYygnZ3JleTcwJywgJ2JsYWNrJywgJ2JsdWUnLCAncmVkJyksICAjIEN1c3RvbWl6ZSBwb2ludCBjb2xvcnMKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMF0KKQpwcmludChwMykgICMgRGlzcGxheSBpbiBub3RlYm9vawpnZ3NhdmUoZmlsZW5hbWUgPSBmaWxlLnBhdGgob3V0cHV0X2RpciwgIlZvbGNhbm9QbG90My5wbmciKSwgcGxvdCA9IHAzLCB3aWR0aCA9IDE0LCBoZWlnaHQgPSAxMCwgZHBpID0gMzAwKQoKIyBGb3VydGggVm9sY2FubyBQbG90IC0gTW9yZSByZWZpbmVkIGZpbHRlcmluZwpwNCA8LSBFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMWUtNCAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nMkZDKSA+PSAxLjAsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2cyRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzIChjZWxsIGxpbmVzKSB2cyBOb3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHN1YnRpdGxlID0gIkhpZ2hsaWdodGluZyBkaWZmZXJlbnRpYWxseSBleHByZXNzZWQgZ2VuZXMiLAogIHBDdXRvZmYgPSAxZS00LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICBjb2xBbHBoYSA9IDAuOCwgICMgU2xpZ2h0IHRyYW5zcGFyZW5jeSBmb3Igbm9uLXNpZ25pZmljYW50IHBvaW50cwogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b20gY29sb3Igc2NoZW1lCiAgZ3JpZGxpbmVzLm1ham9yID0gVFJVRSwKICBncmlkbGluZXMubWlub3IgPSBGQUxTRSwKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMF0KKQpwcmludChwNCkgICMgRGlzcGxheSBpbiBub3RlYm9vawpnZ3NhdmUoZmlsZW5hbWUgPSBmaWxlLnBhdGgob3V0cHV0X2RpciwgIlZvbGNhbm9QbG90NC5wbmciKSwgcGxvdCA9IHA0LCB3aWR0aCA9IDE0LCBoZWlnaHQgPSAxMCwgZHBpID0gMzAwKQoKbWVzc2FnZSgiQWxsIHZvbGNhbm8gcGxvdHMgaGF2ZSBiZWVuIGRpc3BsYXllZCBhbmQgc2F2ZWQgc3VjY2Vzc2Z1bGx5IGluIHRoZSAnTDFfdnNfTDInIGZvbGRlci4iKQoKCgpgYGAKCgojIDQuIEVucmljaG1lbnQgQW5hbHlzaXMtMQpgYGB7ciAsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTh9CiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShlbnJpY2hwbG90KQpsaWJyYXJ5KFJlYWN0b21lUEEpCmxpYnJhcnkoRE9TRSkgIyBGb3IgR1NFQSBhbmFseXNpcwpsaWJyYXJ5KGdncGxvdDIpICMgRW5zdXJlIGdncGxvdDIgaXMgYXZhaWxhYmxlIGZvciBwbG90dGluZwoKIyBEZWZpbmUgdGhyZXNob2xkIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBzZWxlY3Rpb24gKG1vZGlmaWVkIHRocmVzaG9sZHMpCmxvZ0ZDX3VwX3RocmVzaG9sZCA8LSAxICAgICAgICAgICMgVXByZWd1bGF0ZWQgbG9nRkMgdGhyZXNob2xkCmxvZ0ZDX2Rvd25fdGhyZXNob2xkIDwtIC0xLjUgICAgICAjIERvd25yZWd1bGF0ZWQgbG9nRkMgdGhyZXNob2xkCnB2YWxfdGhyZXNob2xkIDwtIDFlLTQgICMgcC12YWx1ZSB0aHJlc2hvbGQgYXMgc3BlY2lmaWVkCgojIExvYWQgeW91ciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiByZXN1bHRzIChtb2RpZnkgYmFzZWQgb24gYWN0dWFsIGRhdGEgc3RydWN0dXJlKQojIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyA8LSByZWFkLmNzdigiWW91cl9ERV9SZXN1bHRzX0ZpbGUuY3N2IikKCiMgU2VsZWN0IHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzCnVwcmVndWxhdGVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1sKICBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA+IGxvZ0ZDX3VwX3RocmVzaG9sZCAmIAogIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCBwdmFsX3RocmVzaG9sZCwgXQoKZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHNbCiAgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCBsb2dGQ19kb3duX3RocmVzaG9sZCAmIAogIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCBwdmFsX3RocmVzaG9sZCwgXQoKIyBDaGVjayBmb3IgbWlzc2luZyBnZW5lcyAoTkFzKSBpbiB0aGUgZ2VuZSBjb2x1bW4gYW5kIHJlbW92ZSB0aGVtCnVwcmVndWxhdGVkX2dlbmVzIDwtIG5hLm9taXQodXByZWd1bGF0ZWRfZ2VuZXMpCmRvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gbmEub21pdChkb3ducmVndWxhdGVkX2dlbmVzKQoKIyBTYXZlIHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmUgcmVzdWx0cyB0byBDU1YKd3JpdGUuY3N2KHVwcmVndWxhdGVkX2dlbmVzLCAiTDFfdnNfTDIvdXByZWd1bGF0ZWRfZ2VuZXMuY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpCndyaXRlLmNzdihkb3ducmVndWxhdGVkX2dlbmVzLCAiTDFfdnNfTDIvZG93bnJlZ3VsYXRlZF9nZW5lcy5jc3YiLCByb3cubmFtZXMgPSBGQUxTRSkKCiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gRW50cmV6IElEcyBmb3IgZW5yaWNobWVudCBhbmFseXNpcywgd2l0aCBjaGVja3MgZm9yIG1pc3NpbmcgdmFsdWVzCnVwcmVndWxhdGVkX2VudHJleiA8LSBiaXRyKHVwcmVndWxhdGVkX2dlbmVzJGdlbmUsIGZyb21UeXBlID0gIlNZTUJPTCIsIHRvVHlwZSA9ICJFTlRSRVpJRCIsIE9yZ0RiID0gb3JnLkhzLmVnLmRiKQpkb3ducmVndWxhdGVkX2VudHJleiA8LSBiaXRyKGRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCgojIENoZWNrIGZvciBtaXNzaW5nIEVudHJleiBJRHMKbWlzc2luZ191cHJlZ3VsYXRlZCA8LSB1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lW2lzLm5hKHVwcmVndWxhdGVkX2VudHJleiRFTlRSRVpJRCldCm1pc3NpbmdfZG93bnJlZ3VsYXRlZCA8LSBkb3ducmVndWxhdGVkX2dlbmVzJGdlbmVbaXMubmEoZG93bnJlZ3VsYXRlZF9lbnRyZXokRU5UUkVaSUQpXQoKIyBQcmludCBvdXQgdGhlIG1pc3NpbmcgZ2VuZSBzeW1ib2xzIGZvciBkZWJ1Z2dpbmcKY2F0KCJNaXNzaW5nIHVwcmVndWxhdGVkIGdlbmVzOlxuIiwgbWlzc2luZ191cHJlZ3VsYXRlZCwgIlxuIikKY2F0KCJNaXNzaW5nIGRvd25yZWd1bGF0ZWQgZ2VuZXM6XG4iLCBtaXNzaW5nX2Rvd25yZWd1bGF0ZWQsICJcbiIpCgojIFJlbW92ZSBnZW5lcyB0aGF0IGNvdWxkbid0IGJlIG1hcHBlZCB0byBFbnRyZXogSURzCnVwcmVndWxhdGVkX2VudHJleiA8LSB1cHJlZ3VsYXRlZF9lbnRyZXokRU5UUkVaSURbIWlzLm5hKHVwcmVndWxhdGVkX2VudHJleiRFTlRSRVpJRCldCmRvd25yZWd1bGF0ZWRfZW50cmV6IDwtIGRvd25yZWd1bGF0ZWRfZW50cmV6JEVOVFJFWklEWyFpcy5uYShkb3ducmVndWxhdGVkX2VudHJleiRFTlRSRVpJRCldCgojIERlZmluZSBhIGZ1bmN0aW9uIHRvIHNhZmVseSBydW4gZW5yaWNobWVudCwgcGxvdCByZXN1bHRzLCBhbmQgc2F2ZSB0aGVtCnNhZmVfZW5yaWNoR08gPC0gZnVuY3Rpb24oZ2VuZV9saXN0LCB0aXRsZSwgZmlsZW5hbWUpIHsKICBpZiAobGVuZ3RoKGdlbmVfbGlzdCkgPiAwKSB7CiAgICByZXN1bHQgPC0gZW5yaWNoR08oZ2VuZSA9IGdlbmVfbGlzdCwgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIGtleVR5cGUgPSAiU1lNQk9MIiwKICAgICAgICAgICAgICAgICAgICAgICBvbnQgPSAiQlAiLCBwQWRqdXN0TWV0aG9kID0gIkJIIiwgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcCA8LSBkb3RwbG90KHJlc3VsdCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gdGl0bGUpCiAgICAgIHByaW50KHApICAKICAgICAgZ2dzYXZlKHBhc3RlMCgiTDFfdnNfTDIvIiwgZ3N1YigiLmNzdiIsICJfZG90cGxvdC5wbmciLCBmaWxlbmFtZSkpLCBwbG90ID0gcCwgd2lkdGggPSA4LCBoZWlnaHQgPSA2KQogICAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShyZXN1bHQpLCBmaWxlID0gcGFzdGUwKCJMMV92c19MMi8iLCBmaWxlbmFtZSksIHJvdy5uYW1lcyA9IEZBTFNFKQogICAgfSBlbHNlIHsKICAgICAgbWVzc2FnZShwYXN0ZSgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3I6IiwgdGl0bGUpKQogICAgfQogIH0gZWxzZSB7CiAgICBtZXNzYWdlKHBhc3RlKCJObyBnZW5lcyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogIH0KfQoKc2FmZV9lbnJpY2hLRUdHIDwtIGZ1bmN0aW9uKGVudHJlel9saXN0LCB0aXRsZSwgZmlsZW5hbWUpIHsKICBpZiAobGVuZ3RoKGVudHJlel9saXN0KSA+IDApIHsKICAgIHJlc3VsdCA8LSBlbnJpY2hLRUdHKGdlbmUgPSBlbnRyZXpfbGlzdCwgb3JnYW5pc20gPSAiaHNhIiwgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAgIGlmICghaXMubnVsbChyZXN1bHQpICYmIG5yb3coYXMuZGF0YS5mcmFtZShyZXN1bHQpKSA+IDApIHsKICAgICAgcCA8LSBkb3RwbG90KHJlc3VsdCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gdGl0bGUpCiAgICAgIHByaW50KHApCiAgICAgIGdnc2F2ZShwYXN0ZTAoIkwxX3ZzX0wyLyIsIGdzdWIoIi5jc3YiLCAiX2RvdHBsb3QucG5nIiwgZmlsZW5hbWUpKSwgcGxvdCA9IHAsIHdpZHRoID0gOCwgaGVpZ2h0ID0gNikKICAgICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUocmVzdWx0KSwgZmlsZSA9IHBhc3RlMCgiTDFfdnNfTDIvIiwgZmlsZW5hbWUpLCByb3cubmFtZXMgPSBGQUxTRSkKICAgIH0gZWxzZSB7CiAgICAgIG1lc3NhZ2UocGFzdGUoIk5vIHNpZ25pZmljYW50IEtFR0cgcGF0aHdheXMgZm91bmQgZm9yOiIsIHRpdGxlKSkKICAgIH0KICB9IGVsc2UgewogICAgbWVzc2FnZShwYXN0ZSgiTm8gZ2VuZXMgZm91bmQgZm9yOiIsIHRpdGxlKSkKICB9Cn0KCnNhZmVfZW5yaWNoUmVhY3RvbWUgPC0gZnVuY3Rpb24oZW50cmV6X2xpc3QsIHRpdGxlLCBmaWxlbmFtZSkgewogIGlmIChsZW5ndGgoZW50cmV6X2xpc3QpID4gMCkgewogICAgcmVzdWx0IDwtIGVucmljaFBhdGh3YXkoZ2VuZSA9IGVudHJlel9saXN0LCBvcmdhbmlzbSA9ICJodW1hbiIsIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCiAgICBpZiAoIWlzLm51bGwocmVzdWx0KSAmJiBucm93KGFzLmRhdGEuZnJhbWUocmVzdWx0KSkgPiAwKSB7CiAgICAgIHAgPC0gZG90cGxvdChyZXN1bHQsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9IHRpdGxlKQogICAgICBwcmludChwKQogICAgICBnZ3NhdmUocGFzdGUwKCJMMV92c19MMi8iLCBnc3ViKCIuY3N2IiwgIl9kb3RwbG90LnBuZyIsIGZpbGVuYW1lKSksIHBsb3QgPSBwLCB3aWR0aCA9IDgsIGhlaWdodCA9IDYpCiAgICAgIHdyaXRlLmNzdihhcy5kYXRhLmZyYW1lKHJlc3VsdCksIGZpbGUgPSBwYXN0ZTAoIkwxX3ZzX0wyLyIsIGZpbGVuYW1lKSwgcm93Lm5hbWVzID0gRkFMU0UpCiAgICB9IGVsc2UgewogICAgICBtZXNzYWdlKHBhc3RlKCJObyBzaWduaWZpY2FudCBSZWFjdG9tZSBwYXRod2F5cyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogICAgfQogIH0gZWxzZSB7CiAgICBtZXNzYWdlKHBhc3RlKCJObyBnZW5lcyBmb3VuZCBmb3I6IiwgdGl0bGUpKQogIH0KfQoKIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzZXMsIGdlbmVyYXRlIHBsb3RzLCBhbmQgc2F2ZSByZXN1bHRzCnNhZmVfZW5yaWNoR08odXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgIkdPIEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIiwgInVwcmVndWxhdGVkX0dPX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hHTyhkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUsICJHTyBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIiwgImRvd25yZWd1bGF0ZWRfR09fcmVzdWx0cy5jc3YiKQoKc2FmZV9lbnJpY2hLRUdHKHVwcmVndWxhdGVkX2VudHJleiwgIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIsICJ1cHJlZ3VsYXRlZF9LRUdHX3Jlc3VsdHMuY3N2IikKc2FmZV9lbnJpY2hLRUdHKGRvd25yZWd1bGF0ZWRfZW50cmV6LCAiS0VHRyBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiLCAiZG93bnJlZ3VsYXRlZF9LRUdHX3Jlc3VsdHMuY3N2IikKCnNhZmVfZW5yaWNoUmVhY3RvbWUodXByZWd1bGF0ZWRfZW50cmV6LCAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIsICJ1cHJlZ3VsYXRlZF9SZWFjdG9tZV9yZXN1bHRzLmNzdiIpCnNhZmVfZW5yaWNoUmVhY3RvbWUoZG93bnJlZ3VsYXRlZF9lbnRyZXosICJSZWFjdG9tZSBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiLCAiZG93bnJlZ3VsYXRlZF9SZWFjdG9tZV9yZXN1bHRzLmNzdiIpCgoKYGBgCgoKCgojIDQuMi4gRW5yaWNobWVudCBBbmFseXNpcy0yLUhhbGxtYXJrCmBgYHtyICwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9OH0KCiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShtc2lnZGJyKQpsaWJyYXJ5KGVucmljaHBsb3QpCgojIExvYWQgSGFsbG1hcmsgZ2VuZSBzZXRzIGZyb20gbXNpZ2RicgpoYWxsbWFya19zZXRzIDwtIG1zaWdkYnIoc3BlY2llcyA9ICJIb21vIHNhcGllbnMiLCBjYXRlZ29yeSA9ICJIIikgICMgIkgiIGlzIGZvciBIYWxsbWFyayBnZW5lIHNldHMKCiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gdXBwZXJjYXNlIGZvciBjb25zaXN0ZW5jeQp1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lIDwtIHRvdXBwZXIodXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSkKZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lIDwtIHRvdXBwZXIoZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lKQoKIyBDaGVjayBmb3Igb3ZlcmxhcCBiZXR3ZWVuIHlvdXIgdXByZWd1bGF0ZWQvZG93bnJlZ3VsYXRlZCBnZW5lcyBhbmQgSGFsbG1hcmsgZ2VuZSBzZXRzCnVwcmVndWxhdGVkX2luX2hhbGxtYXJrIDwtIGludGVyc2VjdCh1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBoYWxsbWFya19zZXRzJGdlbmVfc3ltYm9sKQpkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrIDwtIGludGVyc2VjdChkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUsIGhhbGxtYXJrX3NldHMkZ2VuZV9zeW1ib2wpCgojIFByaW50IHRoZSBudW1iZXIgb2Ygb3ZlcmxhcHBpbmcgZ2VuZXMgZm9yIGJvdGggdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgaW4gSGFsbG1hcmsgZ2VuZSBzZXRzOiIsIGxlbmd0aCh1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyayksICJcbiIpCmNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgaW4gSGFsbG1hcmsgZ2VuZSBzZXRzOiIsIGxlbmd0aChkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrKSwgIlxuIikKCiMgRGVmaW5lIHRoZSBvdXRwdXQgZm9sZGVyIHdoZXJlIHRoZSByZXN1bHRzIHdpbGwgYmUgc2F2ZWQKb3V0cHV0X2ZvbGRlciA8LSAiTDFfdnNfTDIvIgoKIyBJZiB0aGVyZSBhcmUgZ2VuZXMgdG8gYW5hbHl6ZSwgcHJvY2VlZCB3aXRoIGVucmljaG1lbnQgYW5hbHlzaXMKaWYgKGxlbmd0aCh1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaykgPiAwKSB7CiAgIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzaXMgZm9yIHVwcmVndWxhdGVkIGdlbmVzIHVzaW5nIEhhbGxtYXJrIGdlbmUgc2V0cwogIGhhbGxtYXJrX3VwIDwtIGVucmljaGVyKGdlbmUgPSB1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZ2VuZV9zeW1ib2wiKV0sICAjIEVuc3VyZSBURVJNMkdFTkUgdXNlcyBjb3JyZWN0IGNvbHVtbnMKICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya191cCkgJiYgbnJvdyhoYWxsbWFya191cCkgPiAwKSB7CiAgICAjIFZpc3VhbGl6ZSByZXN1bHRzIGlmIGF2YWlsYWJsZQogICAgdXBfZG90cGxvdCA8LSBkb3RwbG90KGhhbGxtYXJrX3VwLCBzaG93Q2F0ZWdvcnkgPSAyMCwgdGl0bGUgPSAiSGFsbG1hcmsgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIpCiAgICAKICAgICMgRGlzcGxheSB0aGUgcGxvdCBpbiB0aGUgbm90ZWJvb2sKICAgIHByaW50KHVwX2RvdHBsb3QpCiAgICAKICAgICMgU2F2ZSB0aGUgZG90cGxvdCB0byBhIFBORyBmaWxlCiAgICBnZ3NhdmUocGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya191cHJlZ3VsYXRlZF9kb3RwbG90LnBuZyIpLCBwbG90ID0gdXBfZG90cGxvdCwgd2lkdGggPSAxMCwgaGVpZ2h0ID0gOCkKICAgIAogICAgIyBPcHRpb25hbGx5LCBzYXZlIHRoZSByZXN1bHRzIGFzIENTVgogICAgd3JpdGUuY3N2KGFzLmRhdGEuZnJhbWUoaGFsbG1hcmtfdXApLCBmaWxlID0gcGFzdGUwKG91dHB1dF9mb2xkZXIsICJoYWxsbWFya191cHJlZ3VsYXRlZF9lbnJpY2htZW50LmNzdiIpLCByb3cubmFtZXMgPSBGQUxTRSkKICB9IGVsc2UgewogICAgY2F0KCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvciB1cHJlZ3VsYXRlZCBnZW5lcy5cbiIpCiAgfQp9IGVsc2UgewogIGNhdCgiTm8gdXByZWd1bGF0ZWQgZ2VuZXMgb3ZlcmxhcCB3aXRoIEhhbGxtYXJrIGdlbmUgc2V0cy5cbiIpCn0KCmlmIChsZW5ndGgoZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyaykgPiAwKSB7CiAgIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzaXMgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMgdXNpbmcgSGFsbG1hcmsgZ2VuZSBzZXRzCiAgaGFsbG1hcmtfZG93biA8LSBlbnJpY2hlcihnZW5lID0gZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyaywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBURVJNMkdFTkUgPSBoYWxsbWFya19zZXRzWywgYygiZ3NfbmFtZSIsICJnZW5lX3N5bWJvbCIpXSwgICMgRW5zdXJlIFRFUk0yR0VORSB1c2VzIGNvcnJlY3QgY29sdW1ucwogICAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAjIENoZWNrIGlmIHJlc3VsdHMgZXhpc3QKICBpZiAoIWlzLm51bGwoaGFsbG1hcmtfZG93bikgJiYgbnJvdyhoYWxsbWFya19kb3duKSA+IDApIHsKICAgICMgVmlzdWFsaXplIHJlc3VsdHMgaWYgYXZhaWxhYmxlCiAgICBkb3duX2RvdHBsb3QgPC0gZG90cGxvdChoYWxsbWFya19kb3duLCBzaG93Q2F0ZWdvcnkgPSAyMCwgdGl0bGUgPSAiSGFsbG1hcmsgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIikKICAgIAogICAgIyBEaXNwbGF5IHRoZSBwbG90IGluIHRoZSBub3RlYm9vawogICAgcHJpbnQoZG93bl9kb3RwbG90KQogICAgCiAgICAjIFNhdmUgdGhlIGRvdHBsb3QgdG8gYSBQTkcgZmlsZQogICAgZ2dzYXZlKHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfZG93bnJlZ3VsYXRlZF9kb3RwbG90LnBuZyIpLCBwbG90ID0gZG93bl9kb3RwbG90LCB3aWR0aCA9IDEwLCBoZWlnaHQgPSA4KQogICAgCiAgICAjIE9wdGlvbmFsbHksIHNhdmUgdGhlIHJlc3VsdHMgYXMgQ1NWCiAgICB3cml0ZS5jc3YoYXMuZGF0YS5mcmFtZShoYWxsbWFya19kb3duKSwgZmlsZSA9IHBhc3RlMChvdXRwdXRfZm9sZGVyLCAiaGFsbG1hcmtfZG93bnJlZ3VsYXRlZF9lbnJpY2htZW50LmNzdiIpLCByb3cubmFtZXMgPSBGQUxTRSkKICB9IGVsc2UgewogICAgY2F0KCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvciBkb3ducmVndWxhdGVkIGdlbmVzLlxuIikKICB9Cn0gZWxzZSB7CiAgY2F0KCJObyBkb3ducmVndWxhdGVkIGdlbmVzIG92ZXJsYXAgd2l0aCBIYWxsbWFyayBnZW5lIHNldHMuXG4iKQp9CgoKYGBgCg==