Una Red Neuronal Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolviendo un problema de aprendizaje.
## Cargando paquete requerido: ggplot2
## Cargando paquete requerido: lattice
## Rows: 506 Columns: 14
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (14): crim, zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, b, ls...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## crim zn indus chas
## Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
## 1st Qu.: 0.08205 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
## Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
## Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
## 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
## Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000
## nox rm age dis
## Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
## 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
## Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
## Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
## 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
## Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
## rad tax ptratio b
## Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
## 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
## Median : 5.000 Median :330.0 Median :19.05 Median :391.44
## Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67
## 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
## Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
## lstat medv
## Min. : 1.73 Min. : 5.00
## 1st Qu.: 6.95 1st Qu.:17.02
## Median :11.36 Median :21.20
## Mean :12.65 Mean :22.53
## 3rd Qu.:16.95 3rd Qu.:25.00
## Max. :37.97 Max. :50.00
## spc_tbl_ [506 × 14] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ crim : num [1:506] 0.00632 0.02731 0.02729 0.03237 0.06905 ...
## $ zn : num [1:506] 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
## $ indus : num [1:506] 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
## $ chas : num [1:506] 0 0 0 0 0 0 0 0 0 0 ...
## $ nox : num [1:506] 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
## $ rm : num [1:506] 6.58 6.42 7.18 7 7.15 ...
## $ age : num [1:506] 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
## $ dis : num [1:506] 4.09 4.97 4.97 6.06 6.06 ...
## $ rad : num [1:506] 1 2 2 3 3 3 5 5 5 5 ...
## $ tax : num [1:506] 296 242 242 222 222 222 311 311 311 311 ...
## $ ptratio: num [1:506] 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
## $ b : num [1:506] 397 397 393 395 397 ...
## $ lstat : num [1:506] 4.98 9.14 4.03 2.94 5.33 ...
## $ medv : num [1:506] 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
## - attr(*, "spec")=
## .. cols(
## .. crim = col_double(),
## .. zn = col_double(),
## .. indus = col_double(),
## .. chas = col_double(),
## .. nox = col_double(),
## .. rm = col_double(),
## .. age = col_double(),
## .. dis = col_double(),
## .. rad = col_double(),
## .. tax = col_double(),
## .. ptratio = col_double(),
## .. b = col_double(),
## .. lstat = col_double(),
## .. medv = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
## # A tibble: 6 × 14
## crim zn indus chas nox rm age dis rad tax ptratio b
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.00632 18 2.31 0 0.538 6.58 65.2 4.09 1 296 15.3 397.
## 2 0.0273 0 7.07 0 0.469 6.42 78.9 4.97 2 242 17.8 397.
## 3 0.0273 0 7.07 0 0.469 7.18 61.1 4.97 2 242 17.8 393.
## 4 0.0324 0 2.18 0 0.458 7.00 45.8 6.06 3 222 18.7 395.
## 5 0.0690 0 2.18 0 0.458 7.15 54.2 6.06 3 222 18.7 397.
## 6 0.0298 0 2.18 0 0.458 6.43 58.7 6.06 3 222 18.7 394.
## # ℹ 2 more variables: lstat <dbl>, medv <dbl>
## [,1]
## [1,] 22.51056
## [2,] 22.51056
## [3,] 22.51056
## [4,] 22.51056
## [5,] 22.51056
## [6,] 22.51056
## [7,] 22.51056
## [8,] 22.51056
## [9,] 22.51056
## [10,] 22.51056
## [11,] 22.51056
## [12,] 22.51056
## [13,] 22.51056
## [14,] 22.51056
## [15,] 22.51056
## [16,] 22.51056
## [17,] 22.51056
## [18,] 22.51056
## [19,] 22.51056
## [20,] 22.51056
## [21,] 22.51056
## [22,] 22.51056
## [23,] 22.51056
## [24,] 22.51056
## [25,] 22.51056
## [26,] 22.51056
## [27,] 22.51056
## [28,] 22.51056
## [29,] 22.51056
## [30,] 22.51056
## [31,] 22.51056
## [32,] 22.51056
## [33,] 22.51056
## [34,] 22.51056
## [35,] 22.51056
## [36,] 22.51056
## [37,] 22.51056
## [38,] 22.51056
## [39,] 22.51056
## [40,] 22.51056
## [41,] 22.51056
## [42,] 22.51056
## [43,] 22.51056
## [44,] 22.51056
## [45,] 22.51056
## [46,] 22.51056
## [47,] 22.51056
## [48,] 22.51056
## [49,] 22.51056
## [50,] 22.51056
## [51,] 22.51056
## [52,] 22.51056
## [53,] 22.51056
## [54,] 22.51056
## [55,] 22.51056
## [56,] 22.51056
## [57,] 22.51056
## [58,] 22.51056
## [59,] 22.51056
## [60,] 22.51056
## [61,] 22.51056
## [62,] 22.51056
## [63,] 22.51056
## [64,] 22.51056
## [65,] 22.51056
## [66,] 22.51056
## [67,] 22.51056
## [68,] 22.51056
## [69,] 22.51056
## [70,] 22.51056
## [71,] 22.51056
## [72,] 22.51056
## [73,] 22.51056
## [74,] 22.51056
## [75,] 22.51056
## [76,] 22.51056
## [77,] 22.51056
## [78,] 22.51056
## [79,] 22.51056
## [80,] 22.51056
## [81,] 22.51056
## [82,] 22.51056
## [83,] 22.51056
## [84,] 22.51056
## [85,] 22.51056
## [86,] 22.51056
## [87,] 22.51056
## [88,] 22.51056
## [89,] 22.51056
## [90,] 22.51056
## [91,] 22.51056
## [92,] 22.51056
## [93,] 22.51056
## [94,] 22.51056
## [95,] 22.51056
## [96,] 22.51056
## [97,] 22.51056
## [98,] 22.51056
## [99,] 22.51056