Telco es una empresa internacionalque vende una variedad de servicios de telecomunicaciones es un indicador de la deserción de cliente , fenomeno en el ciual los cliente cancelan sus serviicos con la emmpresa. El objetivo de este trabaho es predecir si un cliente abandanorá o se quedera en la empresa.
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Cargando paquete requerido: lattice
##
## Adjuntando el paquete: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
## customerID gender SeniorCitizen Partner
## Length:7043 Length:7043 Min. :0.0000 Length:7043
## Class :character Class :character 1st Qu.:0.0000 Class :character
## Mode :character Mode :character Median :0.0000 Mode :character
## Mean :0.1621
## 3rd Qu.:0.0000
## Max. :1.0000
##
## Dependents tenure PhoneService MultipleLines
## Length:7043 Min. : 0.00 Length:7043 Length:7043
## Class :character 1st Qu.: 9.00 Class :character Class :character
## Mode :character Median :29.00 Mode :character Mode :character
## Mean :32.37
## 3rd Qu.:55.00
## Max. :72.00
##
## InternetService OnlineSecurity OnlineBackup DeviceProtection
## Length:7043 Length:7043 Length:7043 Length:7043
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## TechSupport StreamingTV StreamingMovies Contract
## Length:7043 Length:7043 Length:7043 Length:7043
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## PaperlessBilling PaymentMethod MonthlyCharges TotalCharges
## Length:7043 Length:7043 Min. : 18.25 Min. : 18.8
## Class :character Class :character 1st Qu.: 35.50 1st Qu.: 401.4
## Mode :character Mode :character Median : 70.35 Median :1397.5
## Mean : 64.76 Mean :2283.3
## 3rd Qu.: 89.85 3rd Qu.:3794.7
## Max. :118.75 Max. :8684.8
## NA's :11
## Churn
## Length:7043
## Class :character
## Mode :character
##
##
##
##
## customerID gender SeniorCitizen Partner Dependents tenure PhoneService
## 1 7590-VHVEG Female 0 Yes No 1 No
## 2 5575-GNVDE Male 0 No No 34 Yes
## 3 3668-QPYBK Male 0 No No 2 Yes
## 4 7795-CFOCW Male 0 No No 45 No
## 5 9237-HQITU Female 0 No No 2 Yes
## 6 9305-CDSKC Female 0 No No 8 Yes
## MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection
## 1 No phone service DSL No Yes No
## 2 No DSL Yes No Yes
## 3 No DSL Yes Yes No
## 4 No phone service DSL Yes No Yes
## 5 No Fiber optic No No No
## 6 Yes Fiber optic No No Yes
## TechSupport StreamingTV StreamingMovies Contract PaperlessBilling
## 1 No No No Month-to-month Yes
## 2 No No No One year No
## 3 No No No Month-to-month Yes
## 4 Yes No No One year No
## 5 No No No Month-to-month Yes
## 6 No Yes Yes Month-to-month Yes
## PaymentMethod MonthlyCharges TotalCharges Churn
## 1 Electronic check 29.85 29.85 No
## 2 Mailed check 56.95 1889.50 No
## 3 Mailed check 53.85 108.15 Yes
## 4 Bank transfer (automatic) 42.30 1840.75 No
## 5 Electronic check 70.70 151.65 Yes
## 6 Electronic check 99.65 820.50 Yes
## 'data.frame': 7043 obs. of 21 variables:
## $ customerID : chr "7590-VHVEG" "5575-GNVDE" "3668-QPYBK" "7795-CFOCW" ...
## $ gender : chr "Female" "Male" "Male" "Male" ...
## $ SeniorCitizen : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Partner : chr "Yes" "No" "No" "No" ...
## $ Dependents : chr "No" "No" "No" "No" ...
## $ tenure : int 1 34 2 45 2 8 22 10 28 62 ...
## $ PhoneService : chr "No" "Yes" "Yes" "No" ...
## $ MultipleLines : chr "No phone service" "No" "No" "No phone service" ...
## $ InternetService : chr "DSL" "DSL" "DSL" "DSL" ...
## $ OnlineSecurity : chr "No" "Yes" "Yes" "Yes" ...
## $ OnlineBackup : chr "Yes" "No" "Yes" "No" ...
## $ DeviceProtection: chr "No" "Yes" "No" "Yes" ...
## $ TechSupport : chr "No" "No" "No" "Yes" ...
## $ StreamingTV : chr "No" "No" "No" "No" ...
## $ StreamingMovies : chr "No" "No" "No" "No" ...
## $ Contract : chr "Month-to-month" "One year" "Month-to-month" "One year" ...
## $ PaperlessBilling: chr "Yes" "No" "Yes" "No" ...
## $ PaymentMethod : chr "Electronic check" "Mailed check" "Mailed check" "Bank transfer (automatic)" ...
## $ MonthlyCharges : num 29.9 57 53.9 42.3 70.7 ...
## $ TotalCharges : num 29.9 1889.5 108.2 1840.8 151.7 ...
## $ Churn : chr "No" "No" "Yes" "No" ...
LA regresión logística es un modelo que se utiliza para predecir la probabilidad de que ocurra un evento, basado en una o más variables independientes. A diferencia de la regresión lineal, que predice valores continuos (como, por ejemplo, el precio de una casa), la regresión logística predice resultados binarios o categóricos, como sí/no, 1/0, verdadero/falso.
Si la probabilidad es mayor que 0.5, el modelo predice que el evento ocurrirá (por ejemplo, que el cliente se dará de baja).
Si la probabilidad es menor que 0.5, predice que el evento no ocurrirá.
set.seed(123)
r_train <- createDataPartition(tel1$Churn, p=0.7, list=FALSE)
train <- tel1[r_train, ]
test <-tel1[-r_train, ]
# Asegurar que en ambos conjuntos la variable 'Churn' esté ordenada: "No" primero y "Yes" segundo
train$Churn <- factor(train$Churn, levels = c("Yes","No"))
test$Churn <- factor(test$Churn, levels = c("Yes", "No"))# Entrenar el modelo de red neuronal
modelo1 <- glm( Churn ~ ., data = train, family = binomial)
summary(modelo1)##
## Call:
## glm(formula = Churn ~ ., family = binomial, data = train)
##
## Coefficients: (7 not defined because of singularities)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0746695 0.9571525 -1.123 0.261532
## genderMale 0.0482269 0.0771304 0.625 0.531797
## SeniorCitizen -0.1200467 0.1014491 -1.183 0.236683
## PartnerYes 0.0910761 0.0918164 0.992 0.321228
## DependentsYes 0.0843260 0.1068161 0.789 0.429849
## tenure 0.0621135 0.0074487 8.339 < 2e-16 ***
## PhoneServiceYes -0.0233358 0.7635434 -0.031 0.975618
## MultipleLinesNo phone service NA NA NA NA
## MultipleLinesYes -0.3794100 0.2078464 -1.825 0.067935 .
## InternetServiceFiber optic -1.5613737 0.9372764 -1.666 0.095741 .
## InternetServiceNo 1.5047493 0.9480893 1.587 0.112481
## OnlineSecurityNo internet service NA NA NA NA
## OnlineSecurityYes 0.2149292 0.2098780 1.024 0.305804
## OnlineBackupNo internet service NA NA NA NA
## OnlineBackupYes -0.0008494 0.2053088 -0.004 0.996699
## DeviceProtectionNo internet service NA NA NA NA
## DeviceProtectionYes -0.1177891 0.2084585 -0.565 0.572041
## TechSupportNo internet service NA NA NA NA
## TechSupportYes 0.1280168 0.2128673 0.601 0.547579
## StreamingTVNo internet service NA NA NA NA
## StreamingTVYes -0.5187839 0.3819512 -1.358 0.174386
## StreamingMoviesNo internet service NA NA NA NA
## StreamingMoviesYes -0.5783808 0.3840289 -1.506 0.132045
## ContractOne year 0.8451411 0.1304035 6.481 9.11e-11 ***
## ContractTwo year 1.4644194 0.2039949 7.179 7.04e-13 ***
## PaperlessBillingYes -0.3020753 0.0884590 -3.415 0.000638 ***
## PaymentMethodCredit card (automatic) 0.0093796 0.1357499 0.069 0.944914
## PaymentMethodElectronic check -0.2897469 0.1124649 -2.576 0.009985 **
## PaymentMethodMailed check 0.1002695 0.1367827 0.733 0.463524
## MonthlyCharges 0.0336622 0.0372618 0.903 0.366314
## TotalCharges -0.0003653 0.0000844 -4.328 1.50e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5702.8 on 4923 degrees of freedom
## Residual deviance: 4117.1 on 4900 degrees of freedom
## AIC: 4165.1
##
## Number of Fisher Scoring iterations: 6
# Realizar predicciones en los conjuntos de entrenamiento y prueba
resultado_train <- predict(modelo1, train, type="response")
resultado_train<- ifelse(resultado_train>= 0.5, "Yes","No")
resultado_test <- predict(modelo1, test, type="response")
resultado_test <- ifelse(resultado_test>= 0.5, "Yes","No")# Evaluar desempeño del modelo
mcf <- confusionMatrix(factor(resultado_train,
levels=c("Yes", "No")),train$Churn)
mcf## Confusion Matrix and Statistics
##
## Reference
## Prediction Yes No
## Yes 598 3237
## No 711 378
##
## Accuracy : 0.1982
## 95% CI : (0.1872, 0.2096)
## No Information Rate : 0.7342
## P-Value [Acc > NIR] : 1
##
## Kappa : -0.2715
##
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.4568
## Specificity : 0.1046
## Pos Pred Value : 0.1559
## Neg Pred Value : 0.3471
## Prevalence : 0.2658
## Detection Rate : 0.1214
## Detection Prevalence : 0.7788
## Balanced Accuracy : 0.2807
##
## 'Positive' Class : Yes
##
# Evaluar desempeño del modelo
mcf1<- confusionMatrix(factor(resultado_test,
levels=c("Yes","No")),test$Churn)
mcf1## Confusion Matrix and Statistics
##
## Reference
## Prediction Yes No
## Yes 229 1385
## No 331 163
##
## Accuracy : 0.186
## 95% CI : (0.1696, 0.2032)
## No Information Rate : 0.7343
## P-Value [Acc > NIR] : 1
##
## Kappa : -0.3035
##
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.4089
## Specificity : 0.1053
## Pos Pred Value : 0.1419
## Neg Pred Value : 0.3300
## Prevalence : 0.2657
## Detection Rate : 0.1086
## Detection Prevalence : 0.7657
## Balanced Accuracy : 0.2571
##
## 'Positive' Class : Yes
##
info_cliente <- tel1 %>%
select(-Churn) %>% # Elimina la columna "Churn"
slice(4) # Selecciona la primera fila## 1
## 0.9731558
## 1
## "Yes"
modelo_ml <- readRDS(“modelo.rds”) # Modelo para la pestaña ML (por ejemplo, red neuronal) modelo_rl <- readRDS(“modelo.rds1”) # Modelo de regresión logística train <- readRDS(“train.rds”)