Load Text & Detect/Acknowledge

First step is to load in the data table from the tournamentinfo.txt file and proceed to clean up the data by removing the various characters misconstruing the categories. Basically remove all of these characters that are separate from the actual data using regex. (I aim to add the columns/categories later.)

lines <- readLines("C:/Users/aldai/Downloads/tournamentinfo.txt")
## Warning in readLines("C:/Users/aldai/Downloads/tournamentinfo.txt"): incomplete
## final line found on 'C:/Users/aldai/Downloads/tournamentinfo.txt'
lines <- lines[!grepl("^[-]+", lines)]      
lines <- lines[!grepl("Pair \\|", lines)]
lines <- lines[!grepl("Num  \\|", lines)]
lines <- lines[!grepl("USCF ID / Rtg", lines)]
lines <- lines[!grepl(" Pts ", lines)]
head(lines)
## [1] "    1 | GARY HUA                        |6.0  |W  39|W  21|W  18|W  14|W   7|D  12|D   4|"
## [2] "   ON | 15445895 / R: 1794   ->1817     |N:2  |W    |B    |W    |B    |W    |B    |W    |"
## [3] "    2 | DAKSHESH DARURI                 |6.0  |W  63|W  58|L   4|W  17|W  16|W  20|W   7|"
## [4] "   MI | 14598900 / R: 1553   ->1663     |N:2  |B    |W    |B    |W    |B    |W    |B    |"
## [5] "    3 | ADITYA BAJAJ                    |6.0  |L   8|W  61|W  25|W  21|W  11|W  13|W  12|"
## [6] "   MI | 14959604 / R: 1384   ->1640     |N:2  |W    |B    |W    |B    |W    |B    |W    |"

Splitting Process

Upon inspection of the table, each player and their info takes up 2 lines worth of space. Not only is the goal to combine them into one line for the finale of this project, but also to extract those specific categories to align with this information here: Gary Hua, ON, 6.0, 1794, and 1605 but that will be calculated in the next following code block.

player_records <- split(lines, rep(seq_len(length(lines) / 2), each = 2))
parse_record <- function(record) {
  parts1 <- str_trim(strsplit(record[1], "\\|")[[1]])
  parts2 <- str_trim(strsplit(record[2], "\\|")[[1]])
  pair_num <- as.integer(parts1[1])
  name <- parts1[2] #Player name along with total points from the first line
  total_points <- as.numeric(parts1[3])
  state <- parts2[1] #Player state and player pre-rating from the second line
  rating_match <- str_extract(parts2[2], "(?<=R:\\s)\\d+")
  pre_rating <- as.numeric(rating_match)
  temp <- str_match(parts2[2], "R:\\s*(\\d+)")
  rating_match <- temp[, 2]
  pre_rating <- as.numeric(rating_match)
  round_info <- parts1[4:length(parts1)] #Grabbing round info of each player of only the games that count (W, L or D)
  get_opponent_num <- function(x) {
    first_char <- substr(x, 1, 1)
  if (!first_char %in% c("W", "L", "D")) { #Games that count
    return(NA_integer_)
    }
    as.integer(str_extract(x, "\\d+"))
  }
  opp_nums <- sapply(round_info, get_opponent_num, USE.NAMES = FALSE) #Check if a string starts with W, L, or D
  opp_nums <- opp_nums[!is.na(opp_nums)]
  
data.frame( #Create the data frame to be used, and label for the upcoming list
    Name = name,
    State = state,
    TotalPoints = total_points,
    PreRating = pre_rating,
    Opponents   = paste(opp_nums, collapse = ","),
    PairNum = pair_num,
    stringsAsFactors = FALSE
  )
}
play_list <- lapply(player_records, parse_record)
tourna_df <- bind_rows(play_list)
head(tourna_df) #Displaying result to all conditions except the average prechess column is split into 2. The following code block is using this data to create the left join.
##                  Name State TotalPoints PreRating            Opponents PairNum
## 1            GARY HUA    ON         6.0      1794   39,21,18,14,7,12,4       1
## 2     DAKSHESH DARURI    MI         6.0      1553   63,58,4,17,16,20,7       2
## 3        ADITYA BAJAJ    MI         6.0      1384  8,61,25,21,11,13,12       3
## 4 PATRICK H SCHILLING    MI         5.5      1716    23,28,2,26,5,19,1       4
## 5          HANSHI ZUO    MI         5.5      1655  45,37,12,13,4,14,17       5
## 6         HANSEN SONG    OH         5.0      1686 34,29,11,35,10,27,21       6

Confirm Opponent’s in the list for Calculation

For this code block I’m instead using a joins approach rather than the simple rowwise() function for 2 main reasons, because I already have a way of identifying each player’s tournament run with PairNum and thus confirms each list of player’s opponents is correct. Secondly, rowwise() may only the grab the PairNum and directly cause each row’s code to see only that row rather than the entire data set. In using joins, I’m essentially using the data from Opponents and their PairNum for each player’s run to a separate table. This table will be used to combine into the final dataframe in the next code block.

df_opponents <- tourna_df %>%
  select(PairNum, Opponents) %>%
  separate_rows(Opponents, sep = ",") %>% #split opponents into separate numbers within their PairNum
  mutate(Opponents = as.integer(Opponents)) %>% #Convert from character to integer
  filter(!is.na(Opponents))
df_opponents <- df_opponents %>%
  #Join so that Opponents (the opponent's PairNum) uses the opponent's PreRating
  left_join(
    tourna_df %>% select(PairNum, OppPreRating = PreRating),
    by = c("Opponents" = "PairNum")
  )

head(df_opponents)
## # A tibble: 6 × 3
##   PairNum Opponents OppPreRating
##     <int>     <int>        <dbl>
## 1       1        39         1436
## 2       1        21         1563
## 3       1        18         1600
## 4       1        14         1610
## 5       1         7         1649
## 6       1        12         1663

Calculate Average Pre Chess Rating of Opponents

Finding the AvgOppRating or the Average Pre Chess Opponent rating in the tournament requires the mean of those games counted within the last separate table, which will be combined in this code block.

df_avg <- df_opponents %>%
  group_by(PairNum) %>%
  summarize(AvgOppRating = mean(OppPreRating, na.rm = TRUE)) %>%
  mutate(AvgOppRating = round(AvgOppRating, 0)) %>% #Hides decimals but still rounds beforehand
  ungroup()
players_df <- tourna_df %>%
  left_join(df_avg, by = "PairNum")
head(players_df) #Display all columns, next will only contain what is necessary
##                  Name State TotalPoints PreRating            Opponents PairNum
## 1            GARY HUA    ON         6.0      1794   39,21,18,14,7,12,4       1
## 2     DAKSHESH DARURI    MI         6.0      1553   63,58,4,17,16,20,7       2
## 3        ADITYA BAJAJ    MI         6.0      1384  8,61,25,21,11,13,12       3
## 4 PATRICK H SCHILLING    MI         5.5      1716    23,28,2,26,5,19,1       4
## 5          HANSHI ZUO    MI         5.5      1655  45,37,12,13,4,14,17       5
## 6         HANSEN SONG    OH         5.0      1686 34,29,11,35,10,27,21       6
##   AvgOppRating
## 1         1605
## 2         1469
## 3         1564
## 4         1574
## 5         1501
## 6         1519

Select the 5 conditions

The last code block was the calculation and the whole tableset, now to select the name, state, the total points, the prerating, and the average pre chess rating of opponents.

players_df <- players_df %>%
  select(Name, State, TotalPoints, PreRating, AvgOppRating)
players_df
##                          Name State TotalPoints PreRating AvgOppRating
## 1                    GARY HUA    ON         6.0      1794         1605
## 2             DAKSHESH DARURI    MI         6.0      1553         1469
## 3                ADITYA BAJAJ    MI         6.0      1384         1564
## 4         PATRICK H SCHILLING    MI         5.5      1716         1574
## 5                  HANSHI ZUO    MI         5.5      1655         1501
## 6                 HANSEN SONG    OH         5.0      1686         1519
## 7           GARY DEE SWATHELL    MI         5.0      1649         1372
## 8            EZEKIEL HOUGHTON    MI         5.0      1641         1468
## 9                 STEFANO LEE    ON         5.0      1411         1523
## 10                  ANVIT RAO    MI         5.0      1365         1554
## 11   CAMERON WILLIAM MC LEMAN    MI         4.5      1712         1468
## 12             KENNETH J TACK    MI         4.5      1663         1506
## 13          TORRANCE HENRY JR    MI         4.5      1666         1498
## 14               BRADLEY SHAW    MI         4.5      1610         1515
## 15     ZACHARY JAMES HOUGHTON    MI         4.5      1220         1484
## 16               MIKE NIKITIN    MI         4.0      1604         1386
## 17         RONALD GRZEGORCZYK    MI         4.0      1629         1499
## 18              DAVID SUNDEEN    MI         4.0      1600         1480
## 19               DIPANKAR ROY    MI         4.0      1564         1426
## 20                JASON ZHENG    MI         4.0      1595         1411
## 21              DINH DANG BUI    ON         4.0      1563         1470
## 22           EUGENE L MCCLURE    MI         4.0      1555         1300
## 23                   ALAN BUI    ON         4.0      1363         1214
## 24          MICHAEL R ALDRICH    MI         4.0      1229         1357
## 25           LOREN SCHWIEBERT    MI         3.5      1745         1363
## 26                    MAX ZHU    ON         3.5      1579         1507
## 27             GAURAV GIDWANI    MI         3.5      1552         1222
## 28 SOFIA ADINA STANESCU-BELLU    MI         3.5      1507         1522
## 29           CHIEDOZIE OKORIE    MI         3.5      1602         1314
## 30         GEORGE AVERY JONES    ON         3.5      1522         1144
## 31               RISHI SHETTY    MI         3.5      1494         1260
## 32      JOSHUA PHILIP MATHEWS    ON         3.5      1441         1379
## 33                    JADE GE    MI         3.5      1449         1277
## 34     MICHAEL JEFFERY THOMAS    MI         3.5      1399         1375
## 35           JOSHUA DAVID LEE    MI         3.5      1438         1150
## 36              SIDDHARTH JHA    MI         3.5      1355         1388
## 37       AMIYATOSH PWNANANDAM    MI         3.5       980         1385
## 38                  BRIAN LIU    MI         3.0      1423         1539
## 39              JOEL R HENDON    MI         3.0      1436         1430
## 40               FOREST ZHANG    MI         3.0      1348         1391
## 41        KYLE WILLIAM MURPHY    MI         3.0      1403         1248
## 42                   JARED GE    MI         3.0      1332         1150
## 43          ROBERT GLEN VASEY    MI         3.0      1283         1107
## 44         JUSTIN D SCHILLING    MI         3.0      1199         1327
## 45                  DEREK YAN    MI         3.0      1242         1152
## 46   JACOB ALEXANDER LAVALLEY    MI         3.0       377         1358
## 47                ERIC WRIGHT    MI         2.5      1362         1392
## 48               DANIEL KHAIN    MI         2.5      1382         1356
## 49           MICHAEL J MARTIN    MI         2.5      1291         1286
## 50                 SHIVAM JHA    MI         2.5      1056         1296
## 51             TEJAS AYYAGARI    MI         2.5      1011         1356
## 52                  ETHAN GUO    MI         2.5       935         1495
## 53              JOSE C YBARRA    MI         2.0      1393         1345
## 54                LARRY HODGE    MI         2.0      1270         1206
## 55                  ALEX KONG    MI         2.0      1186         1406
## 56               MARISA RICCI    MI         2.0      1153         1414
## 57                 MICHAEL LU    MI         2.0      1092         1363
## 58               VIRAJ MOHILE    MI         2.0       917         1391
## 59          SEAN M MC CORMICK    MI         2.0       853         1319
## 60                 JULIA SHEN    MI         1.5       967         1330
## 61              JEZZEL FARKAS    ON         1.5       955         1327
## 62              ASHWIN BALAJI    MI         1.0      1530         1186
## 63       THOMAS JOSEPH HOSMER    MI         1.0      1175         1350
## 64                     BEN LI    MI         1.0      1163         1263

The following code block is to generate a csv file:

write.csv(players_df, "players_info.csv")

Conclusion

I read in the raw text data from tournamentinfo.txt and used regular expressions to remove extraneous headers and dashes. Then I split the file so that each player’s information appeared on two lines. I extracted each player’s opponent numbers (only the rounds labeled W, L, or D) and created a code to looked up the opponents’ pre-ratings in a list unique to each player. Finally, I calculated the average of those opponent ratings for each player and combined the results into a new separate table/dataframe with columns for name, state, total points, pre-rating, and the average pre chess rating of opponents, to fulfill all conditions.