body {
font-family: "Arial", sans-serif;
font-size: 16px;
line-height: 1.6;
color: #333;
}
h1, h2, h3, h4, h5, h6 {
font-family: "Georgia", serif;
color: #0056b3;
}
code {
font-family: "Courier New", monospace;
background-color: #f4f4f4;
padding: 2px 5px;
border-radius: 4px;
}## IDSTUD IDBOOK M042182 M042081 M042049 M042052 M042076 M042302A M042302B
## 1 10210 1 0 0 1 1 1 0 0
## 2 10224 1 1 0 1 1 0 0 0
## 3 20302 1 0 0 0 0 1 0 0
## 4 20316 1 1 0 0 1 0 0 0
## 5 30412 1 0 0 0 0 1 0 0
## 6 30426 1 0 1 1 1 1 0 0
## M042302C M042100 M042202 M042240 M042093 M042271 M042268 M042159 M042164
## 1 1 0 1 1 0 0 0 1 0
## 2 0 1 1 1 0 0 1 0 0
## 3 0 1 0 1 0 1 0 1 0
## 4 0 1 1 1 0 0 0 1 0
## 5 0 0 1 0 0 1 0 0 0
## 6 0 1 0 1 0 1 1 0 0
## M042167 M062208 M062208A M062208B M062208C M062208D M062153 M062111A M062111B
## 1 0 0 1 1 0 0 0 0 0
## 2 1 1 1 1 1 1 1 1 1
## 3 0 0 1 0 1 0 0 0 0
## 4 1 0 0 1 0 0 0 0 0
## 5 0 0 1 0 0 1 0 0 0
## 6 1 1 1 1 1 1 1 0 0
## M062237 M062314 M062074 M062183 M062202 M062246 M062286 M062325 M062106
## 1 0 0 1 0 0 0 0 0 0
## 2 0 0 0 1 1 0 0 0 0
## 3 0 0 0 0 0 0 0 1 0
## 4 0 0 0 0 0 0 1 1 0
## 5 0 0 1 0 0 0 0 0 0
## 6 0 0 1 1 1 0 0 1 1
## M062124 CNT
## 1 0 TUR
## 2 0 TUR
## 3 0 TUR
## 4 1 TUR
## 5 0 TUR
## 6 1 TUR
## IDSTUD IDBOOK M042182 M042081
## Min. : 10210 Min. :1 Min. :0.0000 Min. :0.0000
## 1st Qu.: 590509 1st Qu.:1 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1190515 Median :1 Median :1.0000 Median :0.0000
## Mean :1185989 Mean :1 Mean :0.5639 Mean :0.3753
## 3rd Qu.:1770612 3rd Qu.:1 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :2460615 Max. :1 Max. :1.0000 Max. :1.0000
## M042049 M042052 M042076 M042302A
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000
## Median :1.0000 Median :1.0000 Median :0.0000 Median :0.000
## Mean :0.6125 Mean :0.6325 Mean :0.4752 Mean :0.364
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## M042302B M042302C M042100 M042202
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :1.000 Median :1.0000
## Mean :0.3136 Mean :0.1164 Mean :0.695 Mean :0.6525
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.0000
## M042240 M042093 M042271 M042268
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :1.0000 Median :0.0000
## Mean :0.6368 Mean :0.1781 Mean :0.5578 Mean :0.2815
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## M042159 M042164 M042167 M062208
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.00000 Median :0.0000 Median :1.0000
## Mean :0.6838 Mean :0.01129 Mean :0.3223 Mean :0.5508
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.0000
## M062208A M062208B M062208C M062208D
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.000
## Median :1.0000 Median :1.0000 Median :1.0000 Median :1.000
## Mean :0.8714 Mean :0.6916 Mean :0.7837 Mean :0.689
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## M062153 M062111A M062111B M062237
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.000
## Mean :0.5334 Mean :0.4162 Mean :0.2919 Mean :0.199
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## M062314 M062074 M062183 M062202
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :1.0000
## Mean :0.1755 Mean :0.4092 Mean :0.3632 Mean :0.5604
## 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## M062246 M062286 M062325 M062106
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.000
## Median :0.0000 Median :0.00000 Median :1.0000 Median :0.000
## Mean :0.2693 Mean :0.05647 Mean :0.5117 Mean :0.404
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.000
## M062124 CNT
## Min. :0.0000 Length:1151
## 1st Qu.:0.0000 Class :character
## Median :0.0000 Mode :character
## Mean :0.4387
## 3rd Qu.:1.0000
## Max. :1.0000
## [1] 0
## IDSTUD IDBOOK M042182 M042081 M042049 M042052 M042076 M042302A
## 0 0 0 0 0 0 0 0
## M042302B M042302C M042100 M042202 M042240 M042093 M042271 M042268
## 0 0 0 0 0 0 0 0
## M042159 M042164 M042167 M062208 M062208A M062208B M062208C M062208D
## 0 0 0 0 0 0 0 0
## M062153 M062111A M062111B M062237 M062314 M062074 M062183 M062202
## 0 0 0 0 0 0 0 0
## M062246 M062286 M062325 M062106 M062124 CNT
## 0 0 0 0 0 0
## [1] FALSE
## [1] 0
## IDSTUD IDBOOK M042182 M042081 M042049 M042052 M042076 M042302A M042302B
## 1 10210 1 0 0 1 1 1 0 0
## 2 10224 1 1 0 1 1 0 0 0
## 3 20302 1 0 0 0 0 1 0 0
## 4 20316 1 1 0 0 1 0 0 0
## 5 30412 1 0 0 0 0 1 0 0
## 6 30426 1 0 1 1 1 1 0 0
## M042302C M042100 M042202 M042240 M042093 M042271 M042268 M042159 M042164
## 1 1 0 1 1 0 0 0 1 0
## 2 0 1 1 1 0 0 1 0 0
## 3 0 1 0 1 0 1 0 1 0
## 4 0 1 1 1 0 0 0 1 0
## 5 0 0 1 0 0 1 0 0 0
## 6 0 1 0 1 0 1 1 0 0
## M042167 M062208 M062208A M062208B M062208C M062208D M062153 M062111A M062111B
## 1 0 0 1 1 0 0 0 0 0
## 2 1 1 1 1 1 1 1 1 1
## 3 0 0 1 0 1 0 0 0 0
## 4 1 0 0 1 0 0 0 0 0
## 5 0 0 1 0 0 1 0 0 0
## 6 1 1 1 1 1 1 1 0 0
## M062237 M062314 M062074 M062183 M062202 M062246 M062286 M062325 M062106
## 1 0 0 1 0 0 0 0 0 0
## 2 0 0 0 1 1 0 0 0 0
## 3 0 0 0 0 0 0 0 1 0
## 4 0 0 0 0 0 0 1 1 0
## 5 0 0 1 0 0 0 0 0 0
## 6 0 0 1 1 1 0 0 1 1
## M062124 CNT Madde_Toplam
## 1 0 TUR 10
## 2 0 TUR 18
## 3 0 TUR 8
## 4 1 TUR 11
## 5 0 TUR 6
## 6 1 TUR 21
betimsel_istatistikler <- TRUSA %>%
group_by(CNT) %>%
summarise(
Gozlem_Sayisi = n(),
Ortalama = round(mean(Madde_Toplam, na.rm = T), 3),
Medyan = round(median(Madde_Toplam, na.rm = T), 3),
Min = round(min(Madde_Toplam, na.rm = T), 3),
Maks = round(max(Madde_Toplam, na.rm = T), 3),
Standart_Sapma = round(sd(Madde_Toplam, na.rm = T), 3))
betimsel_istatistikler## # A tibble: 2 × 7
## CNT Gozlem_Sayisi Ortalama Medyan Min Maks Standart_Sapma
## <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TUR 435 13.5 11 2 32 7.57
## 2 USA 716 17.0 17 1 34 7.53
Ilk donemde ogrendigimiz fonksiyon ile bu islem gerceklestirilmistir.
Betimsel istatistiklerden: n (gozlem sayisi), mean (ortalama), median (medyan), min (en dusuk), max (ek yuksek) ve sd (standart sapma) istatistikleri elde edilmistir.
Farklı bir formatta DT paketi ile tabloyu elde etme:
TUR <- TRUSA %>% filter(CNT == "TUR") %>% pull(Madde_Toplam)
ABD <- TRUSA %>% filter(CNT == "USA") %>% pull(Madde_Toplam)
levene_test <- leveneTest(Madde_Toplam ~ CNT, data = TRUSA)
t_test_sonuc <- t.test(TUR, ABD, var.equal = T)
list(
Varyans_Homojenligi = levene_test,
T_Testi_Sonucu = t_test_sonuc)## $Varyans_Homojenligi
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.1707 0.6796
## 1149
##
## $T_Testi_Sonucu
##
## Two Sample t-test
##
## data: TUR and ABD
## t = -7.8348, df = 1149, p-value = 1.064e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.493049 -2.693382
## sample estimates:
## mean of x mean of y
## 13.45287 17.04609
set.seed(123)
M0_columns <- TRUSA[, grepl("^M0", names(TRUSA))]
TRUSA_5 <- delete_MCAR(M0_columns, p = 0.05) # %5 orani
TRUSA_5 <- cbind(TRUSA_5, CNT = TRUSA$CNT) # %5 orani
TRUSA_10 <- delete_MCAR(M0_columns, p = 0.10) # %10 orani
TRUSA_10 <- cbind(TRUSA_10, CNT = TRUSA$CNT) # %10 orani
TRUSA_15 <- delete_MCAR(M0_columns, p = 0.15) # %15 orani
TRUSA_15 <- cbind(TRUSA_15, CNT = TRUSA$CNT) # %15 orani## # A tibble: 1 × 4
## statistic df p.value missing.patterns
## <dbl> <dbl> <dbl> <int>
## 1 1648. 19772 1 594
## # A tibble: 1 × 4
## statistic df p.value missing.patterns
## <dbl> <dbl> <dbl> <int>
## 1 5909. 32386 1 1008
## # A tibble: 1 × 4
## statistic df p.value missing.patterns
## <dbl> <dbl> <dbl> <int>
## 1 9136. 34889 1 1138
ekle_madde_toplam <- function(veri) {
veri %>%
mutate(Madde_Toplam = rowSums(select(., starts_with("M0")), na.rm = TRUE))
}
TRUSA_5 <- ekle_madde_toplam(TRUSA_5)
TRUSA_10 <- ekle_madde_toplam(TRUSA_10)
TRUSA_15 <- ekle_madde_toplam(TRUSA_15)asil <- t.test(TRUSA$Madde_Toplam[TRUSA$CNT == "TUR"],
TRUSA$Madde_Toplam[TRUSA$CNT == "USA"],
paired = F, var.equal = T)
miss_5 <- t.test(TRUSA_5$Madde_Toplam[TRUSA_5$CNT == "TUR"],
TRUSA_5$Madde_Toplam[TRUSA_5$CNT == "USA"],
paired = F, var.equal = T)
miss_10 <- t.test(TRUSA_10$Madde_Toplam[TRUSA_10$CNT == "TUR"],
TRUSA_10$Madde_Toplam[TRUSA_10$CNT == "USA"],
paired = F, var.equal = T)
miss_15 <- t.test(TRUSA_15$Madde_Toplam[TRUSA_15$CNT == "TUR"],
TRUSA_15$Madde_Toplam[TRUSA_15$CNT == "USA"],
paired = F, var.equal = T)
t_test_sonuclari <- data.frame(
Veri_Seti = c("Tam Veri", "Eksik Veri %5", "Eksik Veri %10", "Eksik Veri %15"),
t_Degeri = c(asil$statistic, miss_5$statistic, miss_10$statistic, miss_15$statistic),
p_Degeri = c(asil$p.value, miss_5$p.value, miss_10$p.value, miss_15$p.value))
print(t_test_sonuclari)## Veri_Seti t_Degeri p_Degeri
## 1 Tam Veri -7.8347837 1.063776e-14
## 2 Eksik Veri %5 -3.1531982 1.907734e-03
## 3 Eksik Veri %10 0.5497133 5.863325e-01
## 4 Eksik Veri %15 -23.5000000 1.805871e-03
t_test_sonuclari %>%
datatable(
options = list(
pageLength = 5,
dom = 't',
columnDefs = list(list(className = 'dt-center', targets = "_all"))),
rownames = F,
caption = "Eksik Veri Setleri icin t-Testi Sonuclari"
) %>%
formatRound(columns = c("t_Degeri", "p_Degeri"), digits = 3)Eksik Veri %10’da p > 0.05 oldugu icin gruplar arasinda manidar bir fark YOK.
Tam veri ve %5, %15 eksik verilerde MANIDAR fark var (p < 0.05).
Eksik veri %5 → Sonuclar MANIDAR ama t degeri KUCULdu (etki AZALDI).
Eksik veri %10 → Sonuçlar tamamen degisti, fark KAYBOLDU (p > 0.05).
Eksik veri %15 → t degeri ARTTI, cok fazla veri kaybı var ve dagilim bozulmus olabilir.
Eger eksik veri MCAR degilse → yani rastgele OLMAYAN eksik veri varsa → sonuclari ciddi sekilde degistirebilir.
Ozellikle %10 eksik veri setinde manidar farkin kaybolmasi → verilerin eksikliginin analiz sonucunu → BOZABILECEGINI gosterebilir.
%15 eksik veri setinde t degeri COK ASIRI → bu da veri kaybının ciddi etki ettigini gosterebilir.
##
## iter imp variable
## 1 1
## 1 2
## 1 3
## 1 4
## 1 5
## 2 1
## 2 2
## 2 3
## 2 4
## 2 5
## 3 1
## 3 2
## 3 3
## 3 4
## 3 5
## 4 1
## 4 2
## 4 3
## 4 4
## 4 5
## 5 1
## 5 2
## 5 3
## 5 4
## 5 5
## 6 1
## 6 2
## 6 3
## 6 4
## 6 5
## 7 1
## 7 2
## 7 3
## 7 4
## 7 5
## 8 1
## 8 2
## 8 3
## 8 4
## 8 5
## 9 1
## 9 2
## 9 3
## 9 4
## 9 5
## 10 1
## 10 2
## 10 3
## 10 4
## 10 5
## 11 1
## 11 2
## 11 3
## 11 4
## 11 5
## 12 1
## 12 2
## 12 3
## 12 4
## 12 5
## 13 1
## 13 2
## 13 3
## 13 4
## 13 5
## 14 1
## 14 2
## 14 3
## 14 4
## 14 5
## 15 1
## 15 2
## 15 3
## 15 4
## 15 5
## 16 1
## 16 2
## 16 3
## 16 4
## 16 5
## 17 1
## 17 2
## 17 3
## 17 4
## 17 5
## 18 1
## 18 2
## 18 3
## 18 4
## 18 5
## 19 1
## 19 2
## 19 3
## 19 4
## 19 5
## 20 1
## 20 2
## 20 3
## 20 4
## 20 5
## 21 1
## 21 2
## 21 3
## 21 4
## 21 5
## 22 1
## 22 2
## 22 3
## 22 4
## 22 5
## 23 1
## 23 2
## 23 3
## 23 4
## 23 5
## 24 1
## 24 2
## 24 3
## 24 4
## 24 5
## 25 1
## 25 2
## 25 3
## 25 4
## 25 5
## 26 1
## 26 2
## 26 3
## 26 4
## 26 5
## 27 1
## 27 2
## 27 3
## 27 4
## 27 5
## 28 1
## 28 2
## 28 3
## 28 4
## 28 5
## 29 1
## 29 2
## 29 3
## 29 4
## 29 5
## 30 1
## 30 2
## 30 3
## 30 4
## 30 5
## 31 1
## 31 2
## 31 3
## 31 4
## 31 5
## 32 1
## 32 2
## 32 3
## 32 4
## 32 5
## 33 1
## 33 2
## 33 3
## 33 4
## 33 5
## 34 1
## 34 2
## 34 3
## 34 4
## 34 5
## 35 1
## 35 2
## 35 3
## 35 4
## 35 5
## 36 1
## 36 2
## 36 3
## 36 4
## 36 5
## 37 1
## 37 2
## 37 3
## 37 4
## 37 5
## 38 1
## 38 2
## 38 3
## 38 4
## 38 5
## 39 1
## 39 2
## 39 3
## 39 4
## 39 5
## 40 1
## 40 2
## 40 3
## 40 4
## 40 5
## 41 1
## 41 2
## 41 3
## 41 4
## 41 5
## 42 1
## 42 2
## 42 3
## 42 4
## 42 5
## 43 1
## 43 2
## 43 3
## 43 4
## 43 5
## 44 1
## 44 2
## 44 3
## 44 4
## 44 5
## 45 1
## 45 2
## 45 3
## 45 4
## 45 5
## 46 1
## 46 2
## 46 3
## 46 4
## 46 5
## 47 1
## 47 2
## 47 3
## 47 4
## 47 5
## 48 1
## 48 2
## 48 3
## 48 4
## 48 5
## 49 1
## 49 2
## 49 3
## 49 4
## 49 5
## 50 1
## 50 2
## 50 3
## 50 4
## 50 5
##
## iter imp variable
## 1 1
## 1 2
## 1 3
## 1 4
## 1 5
## 2 1
## 2 2
## 2 3
## 2 4
## 2 5
## 3 1
## 3 2
## 3 3
## 3 4
## 3 5
## 4 1
## 4 2
## 4 3
## 4 4
## 4 5
## 5 1
## 5 2
## 5 3
## 5 4
## 5 5
## 6 1
## 6 2
## 6 3
## 6 4
## 6 5
## 7 1
## 7 2
## 7 3
## 7 4
## 7 5
## 8 1
## 8 2
## 8 3
## 8 4
## 8 5
## 9 1
## 9 2
## 9 3
## 9 4
## 9 5
## 10 1
## 10 2
## 10 3
## 10 4
## 10 5
## 11 1
## 11 2
## 11 3
## 11 4
## 11 5
## 12 1
## 12 2
## 12 3
## 12 4
## 12 5
## 13 1
## 13 2
## 13 3
## 13 4
## 13 5
## 14 1
## 14 2
## 14 3
## 14 4
## 14 5
## 15 1
## 15 2
## 15 3
## 15 4
## 15 5
## 16 1
## 16 2
## 16 3
## 16 4
## 16 5
## 17 1
## 17 2
## 17 3
## 17 4
## 17 5
## 18 1
## 18 2
## 18 3
## 18 4
## 18 5
## 19 1
## 19 2
## 19 3
## 19 4
## 19 5
## 20 1
## 20 2
## 20 3
## 20 4
## 20 5
## 21 1
## 21 2
## 21 3
## 21 4
## 21 5
## 22 1
## 22 2
## 22 3
## 22 4
## 22 5
## 23 1
## 23 2
## 23 3
## 23 4
## 23 5
## 24 1
## 24 2
## 24 3
## 24 4
## 24 5
## 25 1
## 25 2
## 25 3
## 25 4
## 25 5
## 26 1
## 26 2
## 26 3
## 26 4
## 26 5
## 27 1
## 27 2
## 27 3
## 27 4
## 27 5
## 28 1
## 28 2
## 28 3
## 28 4
## 28 5
## 29 1
## 29 2
## 29 3
## 29 4
## 29 5
## 30 1
## 30 2
## 30 3
## 30 4
## 30 5
## 31 1
## 31 2
## 31 3
## 31 4
## 31 5
## 32 1
## 32 2
## 32 3
## 32 4
## 32 5
## 33 1
## 33 2
## 33 3
## 33 4
## 33 5
## 34 1
## 34 2
## 34 3
## 34 4
## 34 5
## 35 1
## 35 2
## 35 3
## 35 4
## 35 5
## 36 1
## 36 2
## 36 3
## 36 4
## 36 5
## 37 1
## 37 2
## 37 3
## 37 4
## 37 5
## 38 1
## 38 2
## 38 3
## 38 4
## 38 5
## 39 1
## 39 2
## 39 3
## 39 4
## 39 5
## 40 1
## 40 2
## 40 3
## 40 4
## 40 5
## 41 1
## 41 2
## 41 3
## 41 4
## 41 5
## 42 1
## 42 2
## 42 3
## 42 4
## 42 5
## 43 1
## 43 2
## 43 3
## 43 4
## 43 5
## 44 1
## 44 2
## 44 3
## 44 4
## 44 5
## 45 1
## 45 2
## 45 3
## 45 4
## 45 5
## 46 1
## 46 2
## 46 3
## 46 4
## 46 5
## 47 1
## 47 2
## 47 3
## 47 4
## 47 5
## 48 1
## 48 2
## 48 3
## 48 4
## 48 5
## 49 1
## 49 2
## 49 3
## 49 4
## 49 5
## 50 1
## 50 2
## 50 3
## 50 4
## 50 5
##
## iter imp variable
## 1 1
## 1 2
## 1 3
## 1 4
## 1 5
## 2 1
## 2 2
## 2 3
## 2 4
## 2 5
## 3 1
## 3 2
## 3 3
## 3 4
## 3 5
## 4 1
## 4 2
## 4 3
## 4 4
## 4 5
## 5 1
## 5 2
## 5 3
## 5 4
## 5 5
## 6 1
## 6 2
## 6 3
## 6 4
## 6 5
## 7 1
## 7 2
## 7 3
## 7 4
## 7 5
## 8 1
## 8 2
## 8 3
## 8 4
## 8 5
## 9 1
## 9 2
## 9 3
## 9 4
## 9 5
## 10 1
## 10 2
## 10 3
## 10 4
## 10 5
## 11 1
## 11 2
## 11 3
## 11 4
## 11 5
## 12 1
## 12 2
## 12 3
## 12 4
## 12 5
## 13 1
## 13 2
## 13 3
## 13 4
## 13 5
## 14 1
## 14 2
## 14 3
## 14 4
## 14 5
## 15 1
## 15 2
## 15 3
## 15 4
## 15 5
## 16 1
## 16 2
## 16 3
## 16 4
## 16 5
## 17 1
## 17 2
## 17 3
## 17 4
## 17 5
## 18 1
## 18 2
## 18 3
## 18 4
## 18 5
## 19 1
## 19 2
## 19 3
## 19 4
## 19 5
## 20 1
## 20 2
## 20 3
## 20 4
## 20 5
## 21 1
## 21 2
## 21 3
## 21 4
## 21 5
## 22 1
## 22 2
## 22 3
## 22 4
## 22 5
## 23 1
## 23 2
## 23 3
## 23 4
## 23 5
## 24 1
## 24 2
## 24 3
## 24 4
## 24 5
## 25 1
## 25 2
## 25 3
## 25 4
## 25 5
## 26 1
## 26 2
## 26 3
## 26 4
## 26 5
## 27 1
## 27 2
## 27 3
## 27 4
## 27 5
## 28 1
## 28 2
## 28 3
## 28 4
## 28 5
## 29 1
## 29 2
## 29 3
## 29 4
## 29 5
## 30 1
## 30 2
## 30 3
## 30 4
## 30 5
## 31 1
## 31 2
## 31 3
## 31 4
## 31 5
## 32 1
## 32 2
## 32 3
## 32 4
## 32 5
## 33 1
## 33 2
## 33 3
## 33 4
## 33 5
## 34 1
## 34 2
## 34 3
## 34 4
## 34 5
## 35 1
## 35 2
## 35 3
## 35 4
## 35 5
## 36 1
## 36 2
## 36 3
## 36 4
## 36 5
## 37 1
## 37 2
## 37 3
## 37 4
## 37 5
## 38 1
## 38 2
## 38 3
## 38 4
## 38 5
## 39 1
## 39 2
## 39 3
## 39 4
## 39 5
## 40 1
## 40 2
## 40 3
## 40 4
## 40 5
## 41 1
## 41 2
## 41 3
## 41 4
## 41 5
## 42 1
## 42 2
## 42 3
## 42 4
## 42 5
## 43 1
## 43 2
## 43 3
## 43 4
## 43 5
## 44 1
## 44 2
## 44 3
## 44 4
## 44 5
## 45 1
## 45 2
## 45 3
## 45 4
## 45 5
## 46 1
## 46 2
## 46 3
## 46 4
## 46 5
## 47 1
## 47 2
## 47 3
## 47 4
## 47 5
## 48 1
## 48 2
## 48 3
## 48 4
## 48 5
## 49 1
## 49 2
## 49 3
## 49 4
## 49 5
## 50 1
## 50 2
## 50 3
## 50 4
## 50 5
TRUSA_5_filled <- complete(TRUSA_5_imp)
TRUSA_10_filled <- complete(TRUSA_10_imp)
TRUSA_15_filled <- complete(TRUSA_15_imp)asil <- t.test(TRUSA$Madde_Toplam[TRUSA$CNT == "TUR"],
TRUSA$Madde_Toplam[TRUSA$CNT == "USA"],
paired = F, var.equal = T)
miss_5_filled <- t.test(TRUSA_5_filled$Madde_Toplam[TRUSA_5_filled$CNT == "TUR"],
TRUSA_5_filled$Madde_Toplam[TRUSA_5_filled$CNT == "USA"],
paired = F, var.equal = T)
miss_10_filled <- t.test(TRUSA_10_filled$Madde_Toplam[TRUSA_10_filled$CNT == "TUR"],
TRUSA_10_filled$Madde_Toplam[TRUSA_10_filled$CNT == "USA"],
paired = F, var.equal = T)
miss_15_filled <- t.test(TRUSA_15_filled$Madde_Toplam[TRUSA_15_filled$CNT == "TUR"],
TRUSA_15_filled$Madde_Toplam[TRUSA_15_filled$CNT == "USA"],
paired = F, var.equal = T)
t_test_sonuclari_filled <- data.frame(
Veri_Seti = c("Tam Veri", "PPM ile Doldurulmus %5 Eksik Veri", "PPM ile Doldurulmus %10 Eksik Veri", "PPM ile Doldurulmus %15 Eksik Veri"),
t_Degeri = c(asil$statistic, miss_5_filled$statistic, miss_10_filled$statistic, miss_15_filled$statistic),
p_Degeri = c(asil$p.value, miss_5_filled$p.value, miss_10_filled$p.value, miss_15_filled$p.value))datatable(
t_test_sonuclari_filled,
options = list(
pageLength = 5,
dom = 't',
columnDefs = list(list(className = 'dt-center', targets = "_all"))),
rownames = F,
caption = "PPM Yontemi ile Doldurulmus Eksik Veri Setleri icin t-Testi Sonuclari") %>%
formatRound(columns = c("t_Degeri", "p_Degeri"), digits = 3)Tam Veri: t = -7.835, p = 0.000 → TUR ve ABD arasında MANIDAR bir fark VAR. → Eksik veri OLMADAN yapilan en guvenilir sonuc.
PPM ile %5 Eksik Veri: t = -3.153, p = 0.002 → Fark hala MANIDAR → ama t degeri AZALDI. → Eksik veriyi PPM ile doldurduktan sonra → fark KORUNUYOR ancak → etki biraz ZAYIFliyor.
PPM ile %10 Eksik Veri: t = 0.550, p = 0.586 → TUR ve ABD arasinda MANIDAR bir fark YOK → p > 0.05 oldugu icin istatistiksel olarak manidar DEGIL. → Eksik veri oranı ARTTIKCA sonuclar degisti.
PPM ile %15 Eksik Veri: t = -23.500, p = 0.002 → Fark ASIRI BUYUK → Eksik veri orani COK ARTTIGINDA → PPM yontemi → ASIRI UC DEGERLERE neden olabilir. Buradaki t degeri ANORMAL FAZLA (-23.5)!!!
SONUC: - %5 eksik veri için → hem LISTE bazinda silme hem de PPM kabul edilebilir. - %10 eksik veri oldugunda → manidar fark KAYBOLDU ve → yanlis bir sonuca ulasilabilir. - %15 eksik veri oldugunda → her 2 yontem de → guvenilir sonuclar vermemis olabilir.