Teoría

Random Forest es un algoritmo de aprendizaje automatico supervisado que se usa para clasificar y/o hacer regresiones. Se basa en la creación de multiples árboles de decisión y combina sus resultdos para hacer predicciones más precisas y estables.

Instalar paquetes y llamar librerías

#install.packages("randomForest") # Bosques Aleatorios
library(randomForest)
#install.packages("caret") # Entrenamiento de ML
library(caret)

Importar la base de datos

df <- read.csv("C:\\Users\\almai\\Downloads\\House Prices(1).csv")

Entender la base de datos

summary(df)
##        Id           MSSubClass       MSZoning            LotArea      
##  Min.   :   0.0   Min.   : 20.00   Length:2919        Min.   :  1300  
##  1st Qu.: 729.5   1st Qu.: 20.00   Class :character   1st Qu.:  7478  
##  Median :1459.0   Median : 50.00   Mode  :character   Median :  9453  
##  Mean   :1459.0   Mean   : 57.14                      Mean   : 10168  
##  3rd Qu.:2188.5   3rd Qu.: 70.00                      3rd Qu.: 11570  
##  Max.   :2918.0   Max.   :190.00                      Max.   :215245  
##                                                                       
##   LotConfig           BldgType          OverallCond      YearBuilt   
##  Length:2919        Length:2919        Min.   :1.000   Min.   :1872  
##  Class :character   Class :character   1st Qu.:5.000   1st Qu.:1954  
##  Mode  :character   Mode  :character   Median :5.000   Median :1973  
##                                        Mean   :5.565   Mean   :1971  
##                                        3rd Qu.:6.000   3rd Qu.:2001  
##                                        Max.   :9.000   Max.   :2010  
##                                                                      
##   YearRemodAdd  Exterior1st          BsmtFinSF2       TotalBsmtSF    
##  Min.   :1950   Length:2919        Min.   :   0.00   Min.   :   0.0  
##  1st Qu.:1965   Class :character   1st Qu.:   0.00   1st Qu.: 793.0  
##  Median :1993   Mode  :character   Median :   0.00   Median : 989.5  
##  Mean   :1984                      Mean   :  49.58   Mean   :1051.8  
##  3rd Qu.:2004                      3rd Qu.:   0.00   3rd Qu.:1302.0  
##  Max.   :2010                      Max.   :1526.00   Max.   :6110.0  
##                                    NA's   :1         NA's   :1       
##    SalePrice     
##  Min.   : 34900  
##  1st Qu.:129975  
##  Median :163000  
##  Mean   :180921  
##  3rd Qu.:214000  
##  Max.   :755000  
##  NA's   :1459
head(df)
##   Id MSSubClass MSZoning LotArea LotConfig BldgType OverallCond YearBuilt
## 1  0         60       RL    8450    Inside     1Fam           5      2003
## 2  1         20       RL    9600       FR2     1Fam           8      1976
## 3  2         60       RL   11250    Inside     1Fam           5      2001
## 4  3         70       RL    9550    Corner     1Fam           5      1915
## 5  4         60       RL   14260       FR2     1Fam           5      2000
## 6  5         50       RL   14115    Inside     1Fam           5      1993
##   YearRemodAdd Exterior1st BsmtFinSF2 TotalBsmtSF SalePrice
## 1         2003     VinylSd          0         856    208500
## 2         1976     MetalSd          0        1262    181500
## 3         2002     VinylSd          0         920    223500
## 4         1970     Wd Sdng          0         756    140000
## 5         2000     VinylSd          0        1145    250000
## 6         1995     VinylSd          0         796    143000
str(df)
## 'data.frame':    2919 obs. of  13 variables:
##  $ Id          : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ MSSubClass  : int  60 20 60 70 60 50 20 60 50 190 ...
##  $ MSZoning    : chr  "RL" "RL" "RL" "RL" ...
##  $ LotArea     : int  8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
##  $ LotConfig   : chr  "Inside" "FR2" "Inside" "Corner" ...
##  $ BldgType    : chr  "1Fam" "1Fam" "1Fam" "1Fam" ...
##  $ OverallCond : int  5 8 5 5 5 5 5 6 5 6 ...
##  $ YearBuilt   : int  2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
##  $ YearRemodAdd: int  2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
##  $ Exterior1st : chr  "VinylSd" "MetalSd" "VinylSd" "Wd Sdng" ...
##  $ BsmtFinSF2  : int  0 0 0 0 0 0 0 32 0 0 ...
##  $ TotalBsmtSF : int  856 1262 920 756 1145 796 1686 1107 952 991 ...
##  $ SalePrice   : int  208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
df$MSZoning <- as.factor(df$MSZoning)
df$LotConfig <- as.factor(df$LotConfig)
df$BldgType <- as.factor(df$BldgType)
df$Exterior1st <- as.factor(df$Exterior1st)
df$SalePrice <- as.numeric(df$SalePrice)
str(df)
## 'data.frame':    2919 obs. of  13 variables:
##  $ Id          : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ MSSubClass  : int  60 20 60 70 60 50 20 60 50 190 ...
##  $ MSZoning    : Factor w/ 6 levels "","C (all)","FV",..: 5 5 5 5 5 5 5 5 6 5 ...
##  $ LotArea     : int  8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
##  $ LotConfig   : Factor w/ 5 levels "Corner","CulDSac",..: 5 3 5 1 3 5 5 1 5 1 ...
##  $ BldgType    : Factor w/ 5 levels "1Fam","2fmCon",..: 1 1 1 1 1 1 1 1 1 2 ...
##  $ OverallCond : int  5 8 5 5 5 5 5 6 5 6 ...
##  $ YearBuilt   : int  2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
##  $ YearRemodAdd: int  2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
##  $ Exterior1st : Factor w/ 16 levels "","AsbShng","AsphShn",..: 14 10 14 15 14 14 14 8 5 10 ...
##  $ BsmtFinSF2  : int  0 0 0 0 0 0 0 32 0 0 ...
##  $ TotalBsmtSF : int  856 1262 920 756 1145 796 1686 1107 952 991 ...
##  $ SalePrice   : num  208500 181500 223500 140000 250000 ...
df <- na.omit(df)

Entrenar el modelo

set.seed(123)
renglones_entrenamiento <- createDataPartition(df$SalePrice, p = 0.7 , list = FALSE)
entrenamiento <- df[renglones_entrenamiento,]
prueba <- df[-renglones_entrenamiento,]
modelo <- randomForest(SalePrice ~ ., data=entrenamiento, ntree=100)
print(modelo)
## 
## Call:
##  randomForest(formula = SalePrice ~ ., data = entrenamiento, ntree = 100) 
##                Type of random forest: regression
##                      Number of trees: 100
## No. of variables tried at each split: 4
## 
##           Mean of squared residuals: 1651910865
##                     % Var explained: 74.24

Evaluar el modelo

evaluacion_entrenamiento <- predict(modelo, entrenamiento)
evaluacion_prueba <- predict(modelo, prueba)
#matriz_confusion_entrenamiento <- confusionMatrix(evaluacion_entrenamiento,entrenamiento$SalePrice)
#matriz_confusion_prueba <- confusionMatrix(evaluacion_prueba,prueba$SalePrice)

Generar predicciones

prediccion <- predict(modelo,prueba)
LS0tDQp0aXRsZTogIlJhbmRvbSBGb3Jlc3Q6IEhvdXNlcyINCmF1dGhvcjogIkFsbWEgU2FudGlhZ28tIEEwMDgzNjYzNiINCmRhdGU6ICIyMDI1LTAyLTI0Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGZsYXRseQ0KLS0tDQoNCiFbXShDOlxcVXNlcnNcXGFsbWFpXFxEb3dubG9hZHNcXDAyLTE1LTUyLTg2OF81MTIuZ2lmKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjojMUUxRTFFOyI+VGVvcsOtYTwvc3Bhbj4NCioqUmFuZG9tIEZvcmVzdCoqIGVzIHVuIGFsZ29yaXRtbyBkZSBhcHJlbmRpemFqZSBhdXRvbWF0aWNvIHN1cGVydmlzYWRvIHF1ZSBzZSB1c2EgcGFyYSBjbGFzaWZpY2FyIHkvbyBoYWNlciByZWdyZXNpb25lcy4gU2UgYmFzYSBlbiBsYSBjcmVhY2nDs24gZGUgbXVsdGlwbGVzIMOhcmJvbGVzIGRlIGRlY2lzacOzbiB5IGNvbWJpbmEgc3VzIHJlc3VsdGRvcyBwYXJhIGhhY2VyIHByZWRpY2Npb25lcyBtw6FzIHByZWNpc2FzIHkgZXN0YWJsZXMuIA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjojMUUxRTFFOyI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQojaW5zdGFsbC5wYWNrYWdlcygicmFuZG9tRm9yZXN0IikgIyBCb3NxdWVzIEFsZWF0b3Jpb3MNCmxpYnJhcnkocmFuZG9tRm9yZXN0KQ0KI2luc3RhbGwucGFja2FnZXMoImNhcmV0IikgIyBFbnRyZW5hbWllbnRvIGRlIE1MDQpsaWJyYXJ5KGNhcmV0KQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiMxRTFFMUU7Ij5JbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPg0KYGBge3J9DQpkZiA8LSByZWFkLmNzdigiQzpcXFVzZXJzXFxhbG1haVxcRG93bmxvYWRzXFxIb3VzZSBQcmljZXMoMSkuY3N2IikNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjojMUUxRTFFOyI+RW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShkZikNCmhlYWQoZGYpDQpzdHIoZGYpDQpkZiRNU1pvbmluZyA8LSBhcy5mYWN0b3IoZGYkTVNab25pbmcpDQpkZiRMb3RDb25maWcgPC0gYXMuZmFjdG9yKGRmJExvdENvbmZpZykNCmRmJEJsZGdUeXBlIDwtIGFzLmZhY3RvcihkZiRCbGRnVHlwZSkNCmRmJEV4dGVyaW9yMXN0IDwtIGFzLmZhY3RvcihkZiRFeHRlcmlvcjFzdCkNCmRmJFNhbGVQcmljZSA8LSBhcy5udW1lcmljKGRmJFNhbGVQcmljZSkNCnN0cihkZikNCmRmIDwtIG5hLm9taXQoZGYpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IzFFMUUxRTsiPkVudHJlbmFyIGVsIG1vZGVsbzwvc3Bhbj4NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8gPC0gY3JlYXRlRGF0YVBhcnRpdGlvbihkZiRTYWxlUHJpY2UsIHAgPSAwLjcgLCBsaXN0ID0gRkFMU0UpDQplbnRyZW5hbWllbnRvIDwtIGRmW3Jlbmdsb25lc19lbnRyZW5hbWllbnRvLF0NCnBydWViYSA8LSBkZlstcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sXQ0KbW9kZWxvIDwtIHJhbmRvbUZvcmVzdChTYWxlUHJpY2UgfiAuLCBkYXRhPWVudHJlbmFtaWVudG8sIG50cmVlPTEwMCkNCnByaW50KG1vZGVsbykNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjojMUUxRTFFOyI+RXZhbHVhciBlbCBtb2RlbG88L3NwYW4+DQpgYGB7cn0NCmV2YWx1YWNpb25fZW50cmVuYW1pZW50byA8LSBwcmVkaWN0KG1vZGVsbywgZW50cmVuYW1pZW50bykNCmV2YWx1YWNpb25fcHJ1ZWJhIDwtIHByZWRpY3QobW9kZWxvLCBwcnVlYmEpDQojbWF0cml6X2NvbmZ1c2lvbl9lbnRyZW5hbWllbnRvIDwtIGNvbmZ1c2lvbk1hdHJpeChldmFsdWFjaW9uX2VudHJlbmFtaWVudG8sZW50cmVuYW1pZW50byRTYWxlUHJpY2UpDQojbWF0cml6X2NvbmZ1c2lvbl9wcnVlYmEgPC0gY29uZnVzaW9uTWF0cml4KGV2YWx1YWNpb25fcHJ1ZWJhLHBydWViYSRTYWxlUHJpY2UpDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IzFFMUUxRTsiPkdlbmVyYXIgcHJlZGljY2lvbmVzPC9zcGFuPg0KYGBge3J9DQpwcmVkaWNjaW9uIDwtIHByZWRpY3QobW9kZWxvLHBydWViYSkNCmBgYA0KDQo=