Import data
data <- read_excel("../00_data/MyData.xlsx")
data
## # A tibble: 252 × 3
## W Capacity Team
## <dbl> <dbl> <chr>
## 1 5 0.957 Cardinals
## 2 5 0.948 Cardinals
## 3 5 0.954 Cardinals
## 4 5 0.949 Cardinals
## 5 5 0.962 Cardinals
## 6 5 0.961 Cardinals
## 7 5 1.01 Cardinals
## 8 5 0.999 Cardinals
## 9 7 1.02 Falcons
## 10 7 1.02 Falcons
## # ℹ 242 more rows
Apply the following dplyr verbs to your data
Filter rows
filter(data, Capacity != 1)
## # A tibble: 239 × 3
## W Capacity Team
## <dbl> <dbl> <chr>
## 1 5 0.957 Cardinals
## 2 5 0.948 Cardinals
## 3 5 0.954 Cardinals
## 4 5 0.949 Cardinals
## 5 5 0.962 Cardinals
## 6 5 0.961 Cardinals
## 7 5 1.01 Cardinals
## 8 5 0.999 Cardinals
## 9 7 1.02 Falcons
## 10 7 1.02 Falcons
## # ℹ 229 more rows
Arrange rows
arrange(data, desc(Capacity))
## # A tibble: 252 × 3
## W Capacity Team
## <dbl> <dbl> <chr>
## 1 3 1.23 Redskins
## 2 3 1.21 Redskins
## 3 8 1.16 Cowboys
## 4 8 1.14 Cowboys
## 5 8 1.14 Cowboys
## 6 8 1.13 Cowboys
## 7 8 1.13 Cowboys
## 8 8 1.13 Cowboys
## 9 8 1.13 Cowboys
## 10 8 1.13 Cowboys
## # ℹ 242 more rows
Select columns
select(data, W, Capacity)
## # A tibble: 252 × 2
## W Capacity
## <dbl> <dbl>
## 1 5 0.957
## 2 5 0.948
## 3 5 0.954
## 4 5 0.949
## 5 5 0.962
## 6 5 0.961
## 7 5 1.01
## 8 5 0.999
## 9 7 1.02
## 10 7 1.02
## # ℹ 242 more rows
Add columns
data2 <- select(data,
W,
Capacity
)
mutate(data2,
WinRatio = W / 16
)
## # A tibble: 252 × 3
## W Capacity WinRatio
## <dbl> <dbl> <dbl>
## 1 5 0.957 0.312
## 2 5 0.948 0.312
## 3 5 0.954 0.312
## 4 5 0.949 0.312
## 5 5 0.962 0.312
## 6 5 0.961 0.312
## 7 5 1.01 0.312
## 8 5 0.999 0.312
## 9 7 1.02 0.438
## 10 7 1.02 0.438
## # ℹ 242 more rows
Summarize by groups
by_win <- group_by(data, W)
by_win <- summarise(by_win,
Cap = mean(Capacity),
)
ggplot(data = by_win, mapping = aes(x = W, y = Cap)) +
geom_point() +
geom_smooth(se = FALSE)
