dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
sum(is.na(dirty_iris))
## [1] 58
sum(is.na(dirty_iris$Petal.Length))
## [1] 19
num_complete <- sum(complete.cases(dirty_iris))
percent_complete <- (num_complete / nrow(dirty_iris)) * 100
sum(is.na(dirty_iris))
## [1] 58
sum(is.nan(as.matrix(dirty_iris)))
## [1] 0
sum(is.infinite(as.matrix(dirty_iris)) & dirty_iris > 0)
## [1] 0
sum(is.infinite(as.matrix(dirty_iris)) & dirty_iris < 0)
## [1] 0
cat("NA count:", sum(is.na(dirty_iris)), "\n")
## NA count: 58
cat("NaN count:", sum(is.nan(as.matrix(dirty_iris))), "\n")
## NaN count: 0
cat("Inf count:", sum(is.infinite(as.matrix(dirty_iris)) & dirty_iris > 0), "\n")
## Inf count: 0
cat("-Inf count:", sum(is.infinite(as.matrix(dirty_iris)) & dirty_iris < 0), "\n")
## -Inf count: 0
dirty_iris_matrix <- as.matrix(dirty_iris)
dirty_iris_matrix[is.nan(dirty_iris_matrix)] <- NA
summary(dirty_iris_matrix)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Length:150 Length:150 Length:150 Length:150
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
## Species
## Length:150
## Class :character
## Mode :character
violating_rows <- which(dirty_iris$Sepal.Width <= 0 | dirty_iris$Sepal.Length > 30)
violating_data <- dirty_iris[violating_rows, ]
num_violations <- nrow(violating_data)
cat(num_violations)
## 4
invalid_sepal_width <- which(dirty_iris$Sepal.Width <= 0)
cat("Observations with invalid Sepal.Width:\n")
## Observations with invalid Sepal.Width:
print(dirty_iris[invalid_sepal_width, ])
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 16 5.0 -3 3.5 1.0 versicolor
## 130 5.7 0 1.7 0.3 setosa
dirty_iris$Sepal.Width[!is.na(dirty_iris$Sepal.Width) & dirty_iris$Sepal.Width < 0] <-
abs(dirty_iris$Sepal.Width[!is.na(dirty_iris$Sepal.Width) & dirty_iris$Sepal.Width < 0])
dirty_iris$Sepal.Width[!is.na(dirty_iris$Sepal.Width) & dirty_iris$Sepal.Width == 0] <- NA
cat("Updated Sepal.Width values:\n")
## Updated Sepal.Width values:
print(dirty_iris[invalid_sepal_width, ])
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 16 5.0 3 3.5 1.0 versicolor
## 130 5.7 NA 1.7 0.3 setosa
library(DMwR2)
## Warning: package 'DMwR2' was built under R version 4.4.2
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
dirty_iris$Sepal.Width[is.na(dirty_iris$Sepal.Width)] <- mean(dirty_iris$Sepal.Width, na.rm = TRUE)
dirty_iris$Petal.Length[is.na(dirty_iris$Petal.Length)] <- median(dirty_iris$Petal.Length, na.rm = TRUE)
summary(dirty_iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. : 0.000 Min. : 2.200 Min. : 0.000 Min. :0.1
## 1st Qu.: 5.100 1st Qu.: 2.825 1st Qu.: 1.700 1st Qu.:0.3
## Median : 5.750 Median : 3.100 Median : 4.500 Median :1.3
## Mean : 6.559 Mean : 3.462 Mean : 4.456 Mean :Inf
## 3rd Qu.: 6.400 3rd Qu.: 3.462 3rd Qu.: 5.100 3rd Qu.:1.8
## Max. :73.000 Max. :30.000 Max. :63.000 Max. :Inf
## NA's :10 NA's :12
## Species
## Length:150
## Class :character
## Mode :character
##
##
##
##