Justin Kaplan

Workshop 5

Load packages + Data

library(readr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(Hmisc)
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")

Question 1

summary(dirty_iris$Petal.Length)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00    1.60    4.50    4.45    5.10   63.00      19

There are 19 Missing Data points

Question 2

sum(complete.cases(dirty_iris))
## [1] 96

Question 3

summary(dirty_iris)
##   Sepal.Length     Sepal.Width      Petal.Length    Petal.Width 
##  Min.   : 0.000   Min.   :-3.000   Min.   : 0.00   Min.   :0.1  
##  1st Qu.: 5.100   1st Qu.: 2.800   1st Qu.: 1.60   1st Qu.:0.3  
##  Median : 5.750   Median : 3.000   Median : 4.50   Median :1.3  
##  Mean   : 6.559   Mean   : 3.391   Mean   : 4.45   Mean   :Inf  
##  3rd Qu.: 6.400   3rd Qu.: 3.300   3rd Qu.: 5.10   3rd Qu.:1.8  
##  Max.   :73.000   Max.   :30.000   Max.   :63.00   Max.   :Inf  
##  NA's   :10       NA's   :17       NA's   :19      NA's   :12   
##    Species         
##  Length:150        
##  Class :character  
##  Mode  :character  
##                    
##                    
##                    
## 

Question 4

dirty_iris[which(dirty_iris$Petal.Width=="Inf"),"Petal.Width"] <- NA

Question 5

filter(dirty_iris, Sepal.Width < 0 | Sepal.Length > 30)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1            5          -3          3.5           1 versicolor
## 2           73          29         63.0          NA  virginica
## 3           49          30         14.0           2     setosa

Question 6

dirty_iris[which(dirty_iris$Sepal.Width=="-3"),"Sepal.Width"] <- 3

There are now only 2 exceptions for the rules

Question 7.1

mean(dirty_iris$Sepal.Width, na.rm=TRUE)
## [1] 3.43609
Mean_Width <- impute(dirty_iris$Sepal.Width, fun=mean)
print(Mean_Width)
##         1         2         3         4         5         6         7         8 
##   3.20000   3.30000  3.43609*   3.40000   2.60000  3.43609*   2.70000   3.00000 
##         9        10        11        12        13        14        15        16 
##   2.70000   3.10000   3.50000   2.70000   3.00000   2.80000   3.90000   3.00000 
##        17        18        19        20        21        22        23        24 
##  3.43609*   3.20000   4.00000  3.43609*   3.60000  3.43609*   2.80000   3.30000 
##        25        26        27        28        29        30        31        32 
##   3.00000   3.20000   3.10000  29.00000   3.20000   2.80000   3.20000   3.20000 
##        33        34        35        36        37        38        39        40 
##   2.80000   2.90000   2.90000   3.00000   3.00000   2.20000   2.50000   3.00000 
##        41        42        43        44        45        46        47        48 
##  3.43609*   2.70000  3.43609*   2.70000   4.20000   2.80000  3.43609*   3.20000 
##        49        50        51        52        53        54        55        56 
##   3.00000   3.40000   2.60000   3.10000   2.70000   3.40000   3.30000   3.80000 
##        57        58        59        60        61        62        63        64 
##   3.80000   2.90000   2.80000   2.80000   2.30000   2.80000   3.00000   3.30000 
##        65        66        67        68        69        70        71        72 
##   3.00000   2.50000   2.50000   3.20000   3.50000   3.50000   3.00000   3.10000 
##        73        74        75        76        77        78        79        80 
##   3.50000  3.43609*   2.80000   2.50000   3.50000   3.00000   3.80000   3.80000 
##        81        82        83        84        85        86        87        88 
##   2.60000   3.40000   2.90000   3.70000   3.00000   3.80000   2.90000   2.90000 
##        89        90        91        92        93        94        95        96 
##   2.90000   2.50000   3.20000  3.43609*   3.40000   2.70000   2.20000   3.10000 
##        97        98        99       100       101       102       103       104 
##   2.30000  3.43609*   3.00000   2.80000   3.40000   3.60000   2.70000   3.00000 
##       105       106       107       108       109       110       111       112 
##   3.70000  3.43609*   3.00000   3.00000   2.80000   3.40000   3.40000   3.40000 
##       113       114       115       116       117       118       119       120 
##   3.40000   3.30000   3.10000   2.60000  3.43609*   3.10000   3.00000   2.80000 
##       121       122       123       124       125       126       127       128 
##   3.00000   2.30000   3.20000   4.10000  30.00000   2.90000   3.20000  3.43609* 
##       129       130       131       132       133       134       135       136 
##   3.60000   0.00000   2.50000   3.10000  3.43609*   3.30000   3.00000   3.00000 
##       137       138       139       140       141       142       143       144 
##   3.20000   3.00000   3.10000   2.20000  3.43609*  3.43609*   3.00000   2.90000 
##       145       146       147       148       149       150 
##   2.50000   3.10000   3.00000   3.50000   3.10000   2.60000

There are no longer any NA values and all of the NAs have been replaced by 3.43609

Question 7.2

median(dirty_iris$Petal.Length, na.rm=TRUE)
## [1] 4.5
Median_Length <- impute(dirty_iris$Petal.Length, fun=median)
print(Median_Length)
##       1       2       3       4       5       6       7       8       9      10 
##   4.500   6.000   5.400   1.600   3.500  4.500*   5.300   5.100   4.100   1.600 
##      11      12      13      14      15      16      17      18      19      20 
##   1.600   5.100   4.800   4.800   1.700   3.500   4.000   1.300  4.500*   4.200 
##      21      22      23      24      25      26      27      28      29      30 
##  4.500*   4.500  4.500*   5.700   5.900   1.400   1.500  63.000   5.100   0.820 
##      31      32      33      34      35      36      37      38      39      40 
##  4.500*   4.800   4.500  4.500*  23.000   1.400   5.500   4.500   5.800   1.600 
##      41      42      43      44      45      46      47      48      49      50 
##   1.200   3.900   1.300   5.100   1.400   6.700  4.500*   4.700   5.800   4.500 
##      51      52      53      54      55      56      57      58      59      60 
##   4.400  4.500*   3.900   1.600   4.700   6.700   1.500   4.500   5.600   5.600 
##      61      62      63      64      65      66      67      68      69      70 
##   3.300   6.100   1.100   1.400   5.800   4.900  4.500*   5.700  4.500*   1.300 
##      71      72      73      74      75      76      77      78      79      80 
##   4.600   5.100   1.400   4.600   4.900   4.500   1.300   6.600   0.000   6.400 
##      81      82      83      84      85      86      87      88      89      90 
##   5.600   1.700   4.700   1.500   5.200   1.900   4.300   4.200   1.400   5.000 
##      91      92      93      94      95      96      97      98      99     100 
##   6.000   3.300   1.400   5.100   5.000  4.500*   4.000   5.000   4.200   5.100 
##     101     102     103     104     105     106     107     108     109     110 
##   1.500  4.500*   4.900   4.100  4.500*   0.925   5.200   1.400  4.500*   1.400 
##     111     112     113     114     115     116     117     118     119     120 
##  4.500*   1.500   1.500   5.700   4.700   6.900   4.400   1.500   5.500   4.700 
##     121     122     123     124     125     126     127     128     129     130 
##  4.500*   1.300   5.300   1.500  14.000   3.600   5.900   5.100  4.500*   1.700 
##     131     132     133     134     135     136     137     138     139     140 
##   3.900   4.400   1.900   1.700   1.300  4.500*   1.600   4.900   5.400   4.000 
##     141     142     143     144     145     146     147     148     149     150 
##   1.400   3.800   4.400   5.600   5.000   5.600   4.500   1.500  4.500*   4.000

There are no NA values and all of the NAs have been replaced with 4.500

Question 7.3

model <- lm(Sepal.Length ~ Sepal.Width + Petal.Length,
            data = dirty_iris)
I <- is.na(dirty_iris$Sepal.Length)
dirty_iris$Sepal.Length[I] <- predict(model, newdata = dirty_iris[I,])
head(model,10)
## $coefficients
##  (Intercept)  Sepal.Width Petal.Length 
##   -0.3441298    1.4718007    0.4500996 
## 
## $residuals
##            1            2            4            5            7            8 
##  0.008919242 -0.913410218 -0.380152092  0.642099276  0.384739938 -0.466780365 
##            9           10           11           12           13           14 
##  0.324859447 -0.138611870 -0.527332165  0.074759857 -0.231750487  0.862609660 
##           16           18           24           26           27           28 
## -0.646621019 -0.250762067 -0.378380340 -0.395772026  0.006398089  2.305634158 
##           29           32           33           35           36           37 
## -0.161140512 -0.626110635 -0.102360463 -7.676382967  0.098588121 -0.046820201 
##           38           39           40           42           44           45 
##  1.280719980  0.754050290  0.208568203  0.414879366 -0.125240143 -0.967572763 
##           46           48           49           50           51           53 
##  0.907420438  0.518899324 -0.181850078 -0.685440905  0.037009644 -0.185120634 
##           54           55           56           57           59           60 
## -0.580152092 -0.328280749 -0.564380300 -0.823862427  0.102529987  0.102529987 
##           61           62           63           64           65           66 
##  0.473659415  0.877480192 -0.266382001 -0.142952100  0.518149922  0.759139922 
##           70           71           72           73           75           76 
## -0.392302288 -0.041730569  0.386039562 -0.337312247 -0.382400299 -0.460820241 
##           77           78           79           80           81           82 
##  0.107697712  0.558070249 -0.148713041 -0.229350422  0.096890135 -0.025162051 
##           83           84           85           86           87           88 
##  0.060439545 -0.376682354  0.288209676 -1.003902264  0.540479382 -0.114510659 
##           89           90           91           93           94           95 
## -0.154231805  0.714129963  0.133769856 -0.090132173 -0.125240143  0.855670184 
##           97           99          100          101          103          104 
##  0.658589701 -0.261690733  0.227579783  0.064857867  0.464779775 -0.316680774 
##          107          108          110          112          113          115 
##  0.088209676  0.098588121 -0.690132173 -0.335142133 -0.235142133  0.366079398 
##          116          118          122          123          124          125 
##  1.111760667 -0.293601911  0.873858597 -0.351160430 -1.165402649 -1.111286629 
##          126          127          130          131          132          134 
##  0.055549095 -0.221220185  5.278960456  0.509239513  0.501109275 -0.177981977 
##          135          137          139          140          143          144 
## -0.256401919 -0.385791944  0.251009684  1.305769775  0.548289349 -0.144650086 
##          145          146          147          148          150 
##  0.114129963 -0.039010234 -0.496720610 -0.282322206  0.517049480 
## 
## $effects
##   (Intercept)   Sepal.Width  Petal.Length                             
## -71.113136134  76.114741287  20.509012864   0.662846838   0.389916093 
##                                                                       
##  -0.464509454   0.339423240  -0.110450298  -0.505130393   0.081500617 
##                                                                       
##  -0.227132667   0.870207380  -0.631833257  -0.221743535  -0.385273100 
##                                                                       
##  -0.367535797   0.035341965   1.467564471  -0.161849502  -0.624472715 
##                                                                       
##  -0.092415833  -7.812654381   0.129804251  -0.047678503   1.299604311 
##                                                                       
##   0.758294829   0.238219726   0.431007765  -0.118499383  -0.954236036 
##                                                                       
##   0.900154397   0.521319547  -0.185055290  -0.684435976   0.050716477 
##                                                                       
##  -0.168992235  -0.556460369  -0.327350477  -0.586545842  -0.805348203 
##                                                                       
##   0.103869282   0.103869282   0.500441434   0.874907971  -0.232818962 
##                                                                       
##  -0.116205821   0.514944710   0.770425190  -0.367753606  -0.035548143 
##                                                                       
##   0.386820522  -0.313545869  -0.375584882  -0.446405761   0.132246394 
##                                                                       
##   0.548606611  -0.118464268  -0.249169055   0.101209330  -0.002252632 
##                                                                       
##   0.067329619  -0.356678179   0.289698284  -0.988517252   0.550498668 
##                                                                       
##  -0.103709070  -0.121525725   0.724632927   0.126020137  -0.064875845 
##                                                                       
##  -0.118499383   0.870642999   0.679895598  -0.252379094   0.232830594 
##                                                                       
##   0.089331893   0.473085142  -0.306586831   0.089698284   0.129804251 
##                                                                       
##  -0.664875845  -0.310668107  -0.210668107   0.369989571   1.105909920 
##                                                                       
##  -0.264658035   0.916286680  -0.353434027  -1.151358274  -1.580927243 
##                                                                       
##   0.071044504  -0.228187600   5.352528180   0.528347813   0.507366358 
##                                                                       
##  -0.153582608  -0.224403487  -0.359120322   0.249443735   1.328565622 
##                                                                       
##   0.556036382  -0.144800742   0.124632927  -0.042140790  -0.489755880 
##                             
##  -0.259338131   0.533885527 
## 
## $rank
## [1] 3
## 
## $fitted.values
##          1          2          4          5          7          8          9 
##  6.3910808  7.2134102  5.3801521  5.0579007  6.0152601  6.3667804  5.4751406 
##         10         11         12         13         14         16         18 
##  4.9386119  5.5273322  5.9252401  6.2317505  5.9373903  5.6466210  4.9507621 
##         24         26         27         28         29         32         33 
##  7.0783803  4.9957720  4.8936019 70.6943658  6.6611405  6.5261106  5.8023605 
##         35         36         37         38         39         40         42 
## 14.2763830  4.7014119  6.5468202  4.9192800  5.9459497  4.7914318  5.3851206 
##         44         45         46         48         49         50         51 
##  5.9252401  6.4675728  6.7925796  6.4811007  6.6818501  6.6854409  5.4629904 
##         53         54         55         56         57         59         60 
##  5.3851206  5.3801521  6.6282807  8.2643803  5.9238624  6.2974700  6.2974700 
##         61         62         63         64         65         66         70 
##  4.5263406  6.5225198  4.5663820  5.1429521  6.6818501  5.5408601  5.3923023 
##         71         72         73         75         76         77         78 
##  6.1417306  6.5139604  5.4373122  5.9824003  5.3608202  5.3923023  7.0419298 
##         79         80         81         82         83         84         85 
##  5.2487130  8.1293504  6.0031099  5.4251621  6.0395605  5.7766824  6.4117903 
##         86         87         88         89         90         91         93 
##  6.1039023  5.8595206  5.8145107  4.5542318  5.5858700  7.0662301  5.2901322 
##         94         95         97         99        100        101        103 
##  5.9252401  5.1443298  4.8414103  5.9616907  6.0724202  5.3351421  5.8352202 
##        104        107        108        110        112        113        115 
##  5.9166808  6.4117903  4.7014119  5.2901322  5.3351421  5.3351421  6.3339206 
##        116        118        122        123        124        125        126 
##  6.5882393  4.8936019  3.6261414  6.7511604  6.3654026 50.1112866  5.5444509 
##        127        130        131        132        134        135        137 
##  7.0212202  0.4210395  5.0907605  6.1988907  5.2779820  4.6564019  5.0857919 
##        139        140        143        144        145        146        147 
##  6.6489903  4.6942302  6.0517107  6.4446501  5.5858700  6.7390102  6.0967206 
##        148        150 
##  5.4823222  5.2829505 
## 
## $assign
## [1] 0 1 2
## 
## $qr
## $qr
##      (Intercept)   Sepal.Width  Petal.Length
## 1   -10.34408043 -3.617528e+01 -4.761177e+01
## 2     0.09667365  3.747411e+01  4.656817e+01
## 4     0.09667365  1.894585e-03  4.556550e+01
## 5     0.09667365  2.324266e-02  1.071572e-03
## 7     0.09667365  2.057415e-02 -3.579914e-02
## 8     0.09667365  1.256862e-02 -2.351128e-02
## 9     0.09667365  2.057415e-02 -9.463426e-03
## 10    0.09667365  9.900112e-03  5.593408e-02
## 11    0.09667365 -7.739234e-04  6.646552e-02
## 12    0.09667365  2.057415e-02 -3.140985e-02
## 13    0.09667365  1.256862e-02 -1.692735e-02
## 14    0.09667365  1.790564e-02 -2.219307e-02
## 16    0.09667365  1.256862e-02  1.160301e-02
## 18    0.09667365  7.231603e-03  6.515087e-02
## 24    0.09667365  4.563094e-03 -2.878056e-02
## 26    0.09667365  7.231603e-03  6.295623e-02
## 27    0.09667365  9.900112e-03  5.812872e-02
## 28    0.09667365 -6.812437e-01 -6.096662e-01
## 29    0.09667365  7.231603e-03 -1.824556e-02
## 32    0.09667365  7.231603e-03 -1.166163e-02
## 33    0.09667365  1.790564e-02 -1.560914e-02
## 35    0.09667365  1.523713e-02 -4.189852e-01
## 36    0.09667365  1.256862e-02  5.769051e-02
## 37    0.09667365  1.256862e-02 -3.228985e-02
## 38    0.09667365  3.391669e-02 -3.140629e-02
## 39    0.09667365  2.591116e-02 -5.203807e-02
## 40    0.09667365  1.256862e-02  5.330122e-02
## 42    0.09667365  2.057415e-02 -5.074140e-03
## 44    0.09667365  2.057415e-02 -3.140985e-02
## 45    0.09667365 -1.945348e-02  8.928482e-02
## 46    0.09667365  1.790564e-02 -6.389128e-02
## 48    0.09667365  7.231603e-03 -9.466989e-03
## 49    0.09667365  1.256862e-02 -3.887378e-02
## 50    0.09667365  1.894585e-03  1.880146e-04
## 51    0.09667365  2.324266e-02 -1.868021e-02
## 53    0.09667365  2.057415e-02 -5.074140e-03
## 54    0.09667365  1.894585e-03  6.383266e-02
## 55    0.09667365  4.563094e-03 -6.834130e-03
## 56    0.09667365 -8.779450e-03 -3.756269e-02
## 57    0.09667365 -8.779450e-03  7.655874e-02
## 59    0.09667365  1.790564e-02 -3.975021e-02
## 60    0.09667365  1.790564e-02 -3.975021e-02
## 61    0.09667365  3.124818e-02 -2.437719e-03
## 62    0.09667365  1.790564e-02 -5.072342e-02
## 63    0.09667365  1.256862e-02  6.427444e-02
## 64    0.09667365  4.563094e-03  6.558909e-02
## 65    0.09667365  1.256862e-02 -3.887378e-02
## 66    0.09667365  2.591116e-02 -3.228629e-02
## 70    0.09667365 -7.739234e-04  7.304945e-02
## 71    0.09667365  1.256862e-02 -1.253806e-02
## 72    0.09667365  9.900112e-03 -2.087842e-02
## 73    0.09667365 -7.739234e-04  7.085480e-02
## 75    0.09667365  1.790564e-02 -2.438771e-02
## 76    0.09667365  2.591116e-02 -2.350772e-02
## 77    0.09667365 -7.739234e-04  7.304945e-02
## 78    0.09667365  1.256862e-02 -5.643092e-02
## 79    0.09667365 -8.779450e-03  1.094784e-01
## 80    0.09667365 -8.779450e-03 -3.097876e-02
## 81    0.09667365  2.324266e-02 -4.501593e-02
## 82    0.09667365  1.894585e-03  6.163802e-02
## 83    0.09667365  1.523713e-02 -1.736557e-02
## 84    0.09667365 -6.110941e-03  7.392588e-02
## 85    0.09667365  1.256862e-02 -2.570592e-02
## 86    0.09667365 -8.779450e-03  6.778017e-02
## 87    0.09667365  1.523713e-02 -8.586994e-03
## 88    0.09667365  1.523713e-02 -6.392351e-03
## 89    0.09667365  1.523713e-02  5.505765e-02
## 90    0.09667365  2.591116e-02 -3.448093e-02
## 91    0.09667365  7.231603e-03 -3.799735e-02
## 93    0.09667365  1.894585e-03  6.822194e-02
## 94    0.09667365  2.057415e-02 -3.140985e-02
## 95    0.09667365  3.391669e-02 -4.237951e-02
## 97    0.09667365  3.124818e-02 -1.780022e-02
## 99    0.09667365  1.256862e-02 -3.759492e-03
## 100   0.09667365  1.790564e-02 -2.877700e-02
## 101   0.09667365  1.894585e-03  6.602730e-02
## 103   0.09667365  2.057415e-02 -2.702057e-02
## 104   0.09667365  1.256862e-02 -1.564849e-03
## 107   0.09667365  1.256862e-02 -2.570592e-02
## 108   0.09667365  1.256862e-02  5.769051e-02
## 110   0.09667365  1.894585e-03  6.822194e-02
## 112   0.09667365  1.894585e-03  6.602730e-02
## 113   0.09667365  1.894585e-03  6.602730e-02
## 115   0.09667365  9.900112e-03 -1.209985e-02
## 116   0.09667365  2.324266e-02 -7.354629e-02
## 118   0.09667365  9.900112e-03  5.812872e-02
## 122   0.09667365  3.124818e-02  4.145514e-02
## 123   0.09667365  7.231603e-03 -2.263485e-02
## 124   0.09667365 -1.678498e-02  8.445731e-02
## 125   0.09667365 -7.079287e-01  4.920374e-01
## 126   0.09667365  1.523713e-02  6.775506e-03
## 127   0.09667365  7.231603e-03 -3.580270e-02
## 130   0.09667365  9.262388e-02 -2.787919e-02
## 131   0.09667365  2.591116e-02 -1.033986e-02
## 132   0.09667365  9.900112e-03 -5.515919e-03
## 134   0.09667365  4.563094e-03  5.900516e-02
## 135   0.09667365  1.256862e-02  5.988515e-02
## 137   0.09667365  7.231603e-03  5.856694e-02
## 139   0.09667365  9.900112e-03 -2.746235e-02
## 140   0.09667365  3.391669e-02 -2.043308e-02
## 143   0.09667365  1.256862e-02 -8.148778e-03
## 144   0.09667365  1.523713e-02 -3.711735e-02
## 145   0.09667365  2.591116e-02 -3.448093e-02
## 146   0.09667365  9.900112e-03 -3.185163e-02
## 147   0.09667365  1.256862e-02 -1.034342e-02
## 148   0.09667365 -7.739234e-04  6.866016e-02
## 150   0.09667365  2.324266e-02 -9.901642e-03
## attr(,"assign")
## [1] 0 1 2
## 
## $qraux
## [1] 1.096674 1.004563 1.063833
## 
## $pivot
## [1] 1 2 3
## 
## $tol
## [1] 1e-07
## 
## $rank
## [1] 3
## 
## attr(,"class")
## [1] "qr"
## 
## $df.residual
## [1] 104
## 
## $na.action
##   3   6  15  17  19  20  21  22  23  25  30  31  34  41  43  47  52  58  67  68 
##   3   6  15  17  19  20  21  22  23  25  30  31  34  41  43  47  52  58  67  68 
##  69  74  92  96  98 102 105 106 109 111 114 117 119 120 121 128 129 133 136 138 
##  69  74  92  96  98 102 105 106 109 111 114 117 119 120 121 128 129 133 136 138 
## 141 142 149 
## 141 142 149 
## attr(,"class")
## [1] "omit"
## 
## $xlevels
## named list()

Question 7.4

for (i in 1:ncol(dirty_iris)){
  dirty_iris[sample(1:nrow(dirty_iris), 10, replace=FALSE), i] <- NA
}
iris2 <- kNN(dirty_iris)
summary(iris2)
##   Sepal.Length     Sepal.Width      Petal.Length     Petal.Width   
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   :0.100  
##  1st Qu.: 5.100   1st Qu.: 2.800   1st Qu.: 1.500   1st Qu.:0.300  
##  Median : 5.800   Median : 3.000   Median : 4.400   Median :1.300  
##  Mean   : 6.076   Mean   : 3.383   Mean   : 4.303   Mean   :1.207  
##  3rd Qu.: 6.400   3rd Qu.: 3.300   3rd Qu.: 5.100   3rd Qu.:1.800  
##  Max.   :49.000   Max.   :30.000   Max.   :63.000   Max.   :2.500  
##    Species          Sepal.Length_imp Sepal.Width_imp Petal.Length_imp
##  Length:150         Mode :logical    Mode :logical   Mode :logical   
##  Class :character   FALSE:139        FALSE:124       FALSE:122       
##  Mode  :character   TRUE :11         TRUE :26        TRUE :28        
##                                                                      
##                                                                      
##                                                                      
##  Petal.Width_imp Species_imp    
##  Mode :logical   Mode :logical  
##  FALSE:128       FALSE:140      
##  TRUE :22        TRUE :10       
##                                 
##                                 
## 
print(iris2)
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1       6.400000         3.2         4.50         1.5 versicolor
## 2       6.300000         3.3         6.00         2.2  virginica
## 3       6.200000         3.0         5.40         2.3  virginica
## 4       5.000000         3.4         1.60         0.4     setosa
## 5       5.700000         2.6         3.50         1.0 versicolor
## 6       5.300000         3.2         1.50         0.2     setosa
## 7       6.400000         2.7         5.60         1.8  virginica
## 8       5.900000         3.0         5.10         1.8  virginica
## 9       5.800000         2.7         4.10         1.0 versicolor
## 10      4.800000         3.1         1.60         0.2     setosa
## 11      5.000000         3.5         1.60         0.6     setosa
## 12      6.000000         2.9         5.10         1.6 versicolor
## 13      6.000000         3.0         4.80         2.0  virginica
## 14      6.800000         2.8         4.80         1.4 versicolor
## 15      6.161062         3.9         1.40         0.2     setosa
## 16      5.000000         3.0         3.50         1.0 versicolor
## 17      5.500000         3.0         4.00         1.3 versicolor
## 18      4.700000         3.2         1.30         0.2     setosa
## 19      4.500000         4.0         1.40         0.2     setosa
## 20      5.600000         2.9         4.20         1.3 versicolor
## 21      4.900000         3.6         1.40         0.3     setosa
## 22      5.400000         2.9         4.50         1.5 versicolor
## 23      6.200000         2.8         5.50         1.8  virginica
## 24      6.700000         3.3         5.70         2.5  virginica
## 25      6.726860         3.0         5.90         2.1  virginica
## 26      4.600000         3.2         1.40         0.2     setosa
## 27      4.900000         3.1         1.50         0.1     setosa
## 28      6.300000        29.0        63.00         2.4  virginica
## 29      6.500000         3.2         5.10         2.0  virginica
## 30      4.145994         2.8         0.82         1.3 versicolor
## 31      4.400000         3.2         1.40         0.2     setosa
## 32      6.300000         3.2         4.80         1.4 versicolor
## 33      5.700000         2.8         4.50         1.3 versicolor
## 34      6.200000         3.0         4.20         1.3 versicolor
## 35      6.600000         2.9        23.00         1.3 versicolor
## 36      4.800000         3.0         1.40         0.2     setosa
## 37      6.500000         3.0         5.50         1.8  virginica
## 38      6.300000         2.2         4.50         1.5 versicolor
## 39      6.700000         2.5         5.80         1.8  virginica
## 40      5.000000         3.4         1.60         0.2     setosa
## 41      5.000000         3.4         1.20         0.2     setosa
## 42      5.800000         2.7         3.90         1.2 versicolor
## 43      0.000000         3.0         1.30         0.4     setosa
## 44      5.800000         2.7         5.10         1.9  virginica
## 45      5.500000         4.2         1.40         0.2     setosa
## 46      7.700000         2.8         6.70         2.0  virginica
## 47      5.700000         3.2         1.40         0.4     setosa
## 48      7.000000         3.2         4.60         1.4 versicolor
## 49      6.500000         3.0         5.80         2.2  virginica
## 50      6.000000         3.4         4.50         1.6 versicolor
## 51      5.500000         2.6         4.40         1.2 versicolor
## 52      4.900000         3.1         1.40         0.2     setosa
## 53      5.200000         2.7         3.90         1.4 versicolor
## 54      4.800000         3.4         1.60         0.2     setosa
## 55      6.300000         3.3         4.70         1.6 versicolor
## 56      7.700000         3.0         6.70         2.2  virginica
## 57      5.100000         3.8         1.50         0.3     setosa
## 58      5.949541         2.9         4.50         1.5 versicolor
## 59      6.400000         2.8         5.60         1.8  virginica
## 60      6.400000         2.8         5.60         1.8  virginica
## 61      5.000000         2.3         3.30         1.1 versicolor
## 62      7.400000         2.8         6.10         1.9  virginica
## 63      4.300000         3.0         1.50         0.1     setosa
## 64      5.000000         3.3         1.40         0.2     setosa
## 65      7.200000         3.0         5.10         1.6  virginica
## 66      6.300000         2.5         4.90         1.5 versicolor
## 67      5.100000         2.5         3.80         1.1 versicolor
## 68      6.931200         3.2         5.70         2.3  virginica
## 69      5.100000         3.5         1.40         0.3     setosa
## 70      5.000000         3.5         1.30         0.3     setosa
## 71      6.600000         3.0         4.60         1.4 versicolor
## 72      6.900000         3.1         5.10         2.3  virginica
## 73      5.100000         3.5         1.40         0.3     setosa
## 74      6.500000         2.9         4.60         1.5 versicolor
## 75      5.600000         2.8         4.90         2.0  virginica
## 76      4.900000         2.5         4.50         1.9  virginica
## 77      5.500000         3.5         1.30         0.2     setosa
## 78      7.600000         3.0         6.60         2.1  virginica
## 79      5.100000         3.8         0.00         0.2     setosa
## 80      7.900000         3.8         6.40         2.0  virginica
## 81      6.100000         2.6         5.10         1.4  virginica
## 82      5.400000         3.4         1.70         0.2     setosa
## 83      6.100000         2.9         4.70         1.4 versicolor
## 84      5.400000         3.7         1.50         0.2     setosa
## 85      6.700000         3.0         5.20         2.3  virginica
## 86      5.100000         3.8         1.90         0.3     setosa
## 87      6.400000         2.9         4.30         1.3 versicolor
## 88      5.700000         2.9         4.20         1.3 versicolor
## 89      4.400000         2.9         1.40         0.2     setosa
## 90      6.300000         2.5         5.00         1.9  virginica
## 91      6.300000         3.2         6.00         1.8  virginica
## 92      4.900000         2.7         3.30         1.0 versicolor
## 93      5.200000         3.4         1.40         0.2     setosa
## 94      5.800000         2.7         5.10         1.9  virginica
## 95      6.000000         2.2         5.00         1.5  virginica
## 96      6.900000         3.1         4.50         1.5 versicolor
## 97      5.500000         2.3         4.00         1.3 versicolor
## 98      6.700000         3.0         5.00         1.7  virginica
## 99      5.700000         3.0         4.20         1.2 versicolor
## 100     6.300000         2.8         5.10         1.5  virginica
## 101     5.400000         3.4         1.50         0.2     setosa
## 102     7.200000         3.6         5.70         2.5  virginica
## 103     6.300000         2.7         4.90         1.8  virginica
## 104     5.600000         3.0         4.10         1.3 versicolor
## 105     5.100000         3.7         1.40         0.3     setosa
## 106     5.500000         3.0         3.50         1.0 versicolor
## 107     6.500000         3.0         5.20         2.0  virginica
## 108     4.800000         3.0         1.40         0.2     setosa
## 109     6.100000         2.8         4.80         1.4 versicolor
## 110     4.600000         3.4         1.40         0.3     setosa
## 111     6.300000         3.4         5.60         2.4  virginica
## 112     5.000000         3.4         1.50         0.2     setosa
## 113     5.100000         3.4         1.50         0.2     setosa
## 114     7.078380         3.3         5.70         2.1  virginica
## 115     6.700000         2.9         4.70         1.5 versicolor
## 116     7.700000         2.6         5.40         2.3  virginica
## 117     6.300000         2.9         4.40         1.3 versicolor
## 118     4.700000         3.1         1.50         0.2     setosa
## 119     6.546820         3.0         5.50         2.1  virginica
## 120     5.892380         2.8         4.70         1.2 versicolor
## 121     5.900000         3.0         4.50         1.5 versicolor
## 122     4.500000         2.3         1.40         0.3     setosa
## 123     6.400000         3.0         5.30         2.3  virginica
## 124     5.200000         4.1         1.50         0.1     setosa
## 125    49.000000        30.0        14.00         2.0     setosa
## 126     5.600000         2.9         3.60         1.3 versicolor
## 127     6.800000         3.0         5.90         2.3  virginica
## 128     5.800000         3.0         5.10         2.4  virginica
## 129     4.600000         3.6         1.50         0.2     setosa
## 130     5.000000         0.0         1.70         0.3     setosa
## 131     5.600000         2.5         3.90         1.1 versicolor
## 132     6.700000         3.1         4.40         1.4 versicolor
## 133     5.000000         3.4         1.90         0.2     setosa
## 134     5.000000         3.3         1.70         0.5     setosa
## 135     4.400000         3.0         1.30         0.2     setosa
## 136     7.700000         3.0         5.40         2.3  virginica
## 137     4.700000         3.2         1.60         0.2     setosa
## 138     6.276760         3.0         4.90         1.8  virginica
## 139     6.900000         3.1         5.40         2.1  virginica
## 140     6.000000         2.2         4.00         1.0 versicolor
## 141     5.000000         3.0         1.40         0.2     setosa
## 142     5.500000         2.6         3.80         1.1 versicolor
## 143     6.600000         3.0         4.40         1.4 versicolor
## 144     6.300000         2.9         5.60         1.8  virginica
## 145     5.700000         2.5         5.00         2.0  virginica
## 146     6.700000         3.1         5.60         2.4  virginica
## 147     5.600000         3.0         4.50         1.5 versicolor
## 148     5.200000         3.5         1.50         0.2     setosa
## 149     6.400000         3.1         5.50         1.8  virginica
## 150     5.800000         2.7         4.00         1.1 versicolor
##     Sepal.Length_imp Sepal.Width_imp Petal.Length_imp Petal.Width_imp
## 1              FALSE           FALSE            FALSE           FALSE
## 2              FALSE           FALSE            FALSE            TRUE
## 3              FALSE            TRUE            FALSE           FALSE
## 4              FALSE           FALSE            FALSE           FALSE
## 5              FALSE           FALSE            FALSE           FALSE
## 6              FALSE            TRUE             TRUE           FALSE
## 7              FALSE           FALSE             TRUE            TRUE
## 8              FALSE           FALSE            FALSE           FALSE
## 9              FALSE           FALSE            FALSE           FALSE
## 10             FALSE           FALSE            FALSE           FALSE
## 11             FALSE           FALSE            FALSE           FALSE
## 12             FALSE            TRUE            FALSE           FALSE
## 13             FALSE           FALSE            FALSE            TRUE
## 14             FALSE           FALSE            FALSE           FALSE
## 15             FALSE           FALSE             TRUE            TRUE
## 16             FALSE           FALSE            FALSE           FALSE
## 17             FALSE            TRUE            FALSE           FALSE
## 18             FALSE           FALSE            FALSE           FALSE
## 19              TRUE           FALSE             TRUE           FALSE
## 20             FALSE            TRUE            FALSE           FALSE
## 21             FALSE           FALSE             TRUE            TRUE
## 22             FALSE            TRUE            FALSE           FALSE
## 23             FALSE           FALSE             TRUE           FALSE
## 24              TRUE           FALSE            FALSE           FALSE
## 25             FALSE           FALSE            FALSE           FALSE
## 26             FALSE           FALSE            FALSE           FALSE
## 27             FALSE           FALSE            FALSE           FALSE
## 28              TRUE           FALSE            FALSE            TRUE
## 29             FALSE           FALSE            FALSE           FALSE
## 30             FALSE           FALSE            FALSE           FALSE
## 31             FALSE           FALSE             TRUE           FALSE
## 32              TRUE           FALSE            FALSE            TRUE
## 33             FALSE           FALSE            FALSE           FALSE
## 34             FALSE            TRUE             TRUE           FALSE
## 35             FALSE           FALSE            FALSE           FALSE
## 36             FALSE           FALSE            FALSE            TRUE
## 37             FALSE           FALSE            FALSE           FALSE
## 38              TRUE           FALSE            FALSE           FALSE
## 39             FALSE           FALSE            FALSE           FALSE
## 40             FALSE            TRUE            FALSE           FALSE
## 41             FALSE            TRUE            FALSE           FALSE
## 42             FALSE           FALSE            FALSE           FALSE
## 43             FALSE            TRUE            FALSE           FALSE
## 44             FALSE           FALSE            FALSE           FALSE
## 45             FALSE           FALSE            FALSE           FALSE
## 46             FALSE           FALSE            FALSE           FALSE
## 47             FALSE            TRUE             TRUE           FALSE
## 48             FALSE           FALSE             TRUE           FALSE
## 49             FALSE           FALSE            FALSE           FALSE
## 50             FALSE           FALSE            FALSE           FALSE
## 51             FALSE           FALSE            FALSE           FALSE
## 52             FALSE           FALSE             TRUE           FALSE
## 53             FALSE           FALSE            FALSE           FALSE
## 54             FALSE           FALSE            FALSE           FALSE
## 55             FALSE           FALSE            FALSE           FALSE
## 56             FALSE            TRUE            FALSE           FALSE
## 57             FALSE           FALSE            FALSE           FALSE
## 58             FALSE           FALSE            FALSE           FALSE
## 59             FALSE           FALSE            FALSE            TRUE
## 60             FALSE           FALSE            FALSE            TRUE
## 61             FALSE           FALSE            FALSE            TRUE
## 62             FALSE           FALSE            FALSE           FALSE
## 63             FALSE           FALSE             TRUE           FALSE
## 64             FALSE           FALSE            FALSE           FALSE
## 65             FALSE           FALSE             TRUE           FALSE
## 66             FALSE           FALSE            FALSE           FALSE
## 67             FALSE           FALSE             TRUE           FALSE
## 68             FALSE           FALSE            FALSE           FALSE
## 69             FALSE           FALSE             TRUE            TRUE
## 70             FALSE           FALSE            FALSE           FALSE
## 71              TRUE           FALSE            FALSE           FALSE
## 72             FALSE           FALSE            FALSE           FALSE
## 73             FALSE           FALSE            FALSE           FALSE
## 74             FALSE            TRUE            FALSE           FALSE
## 75             FALSE           FALSE            FALSE           FALSE
## 76             FALSE           FALSE            FALSE            TRUE
## 77             FALSE           FALSE            FALSE           FALSE
## 78             FALSE           FALSE            FALSE           FALSE
## 79             FALSE           FALSE            FALSE           FALSE
## 80             FALSE           FALSE            FALSE           FALSE
## 81             FALSE           FALSE             TRUE           FALSE
## 82             FALSE           FALSE            FALSE           FALSE
## 83             FALSE           FALSE            FALSE           FALSE
## 84             FALSE           FALSE            FALSE           FALSE
## 85             FALSE           FALSE            FALSE           FALSE
## 86             FALSE           FALSE            FALSE            TRUE
## 87             FALSE           FALSE            FALSE           FALSE
## 88             FALSE           FALSE            FALSE           FALSE
## 89             FALSE           FALSE            FALSE           FALSE
## 90             FALSE           FALSE            FALSE           FALSE
## 91              TRUE           FALSE            FALSE           FALSE
## 92             FALSE            TRUE            FALSE           FALSE
## 93             FALSE           FALSE            FALSE           FALSE
## 94             FALSE           FALSE            FALSE           FALSE
## 95             FALSE           FALSE            FALSE           FALSE
## 96             FALSE           FALSE             TRUE           FALSE
## 97             FALSE           FALSE            FALSE           FALSE
## 98             FALSE            TRUE            FALSE           FALSE
## 99             FALSE           FALSE            FALSE           FALSE
## 100            FALSE           FALSE            FALSE           FALSE
## 101            FALSE           FALSE            FALSE            TRUE
## 102            FALSE           FALSE             TRUE           FALSE
## 103            FALSE           FALSE            FALSE            TRUE
## 104            FALSE           FALSE            FALSE           FALSE
## 105            FALSE           FALSE             TRUE            TRUE
## 106            FALSE            TRUE             TRUE           FALSE
## 107            FALSE           FALSE            FALSE           FALSE
## 108            FALSE           FALSE            FALSE            TRUE
## 109            FALSE           FALSE             TRUE            TRUE
## 110            FALSE           FALSE            FALSE           FALSE
## 111            FALSE           FALSE             TRUE           FALSE
## 112            FALSE           FALSE            FALSE           FALSE
## 113            FALSE           FALSE            FALSE           FALSE
## 114            FALSE           FALSE            FALSE           FALSE
## 115            FALSE            TRUE            FALSE           FALSE
## 116            FALSE           FALSE             TRUE           FALSE
## 117            FALSE            TRUE            FALSE           FALSE
## 118             TRUE           FALSE            FALSE           FALSE
## 119            FALSE           FALSE            FALSE           FALSE
## 120            FALSE            TRUE            FALSE           FALSE
## 121            FALSE           FALSE             TRUE           FALSE
## 122            FALSE           FALSE             TRUE           FALSE
## 123            FALSE            TRUE            FALSE           FALSE
## 124            FALSE           FALSE            FALSE           FALSE
## 125            FALSE           FALSE            FALSE           FALSE
## 126            FALSE           FALSE            FALSE           FALSE
## 127            FALSE            TRUE            FALSE           FALSE
## 128            FALSE            TRUE            FALSE           FALSE
## 129            FALSE           FALSE             TRUE           FALSE
## 130             TRUE           FALSE            FALSE           FALSE
## 131            FALSE           FALSE            FALSE           FALSE
## 132            FALSE           FALSE            FALSE           FALSE
## 133             TRUE            TRUE            FALSE           FALSE
## 134             TRUE           FALSE            FALSE           FALSE
## 135            FALSE           FALSE            FALSE            TRUE
## 136            FALSE           FALSE             TRUE           FALSE
## 137            FALSE           FALSE            FALSE           FALSE
## 138            FALSE           FALSE            FALSE           FALSE
## 139            FALSE           FALSE            FALSE           FALSE
## 140            FALSE           FALSE            FALSE           FALSE
## 141            FALSE            TRUE            FALSE            TRUE
## 142            FALSE            TRUE            FALSE           FALSE
## 143            FALSE           FALSE            FALSE           FALSE
## 144            FALSE           FALSE            FALSE           FALSE
## 145            FALSE           FALSE            FALSE           FALSE
## 146            FALSE           FALSE            FALSE           FALSE
## 147            FALSE           FALSE            FALSE           FALSE
## 148            FALSE           FALSE            FALSE           FALSE
## 149            FALSE           FALSE             TRUE           FALSE
## 150            FALSE            TRUE            FALSE            TRUE
##     Species_imp
## 1         FALSE
## 2         FALSE
## 3         FALSE
## 4         FALSE
## 5         FALSE
## 6         FALSE
## 7         FALSE
## 8         FALSE
## 9         FALSE
## 10         TRUE
## 11        FALSE
## 12        FALSE
## 13        FALSE
## 14        FALSE
## 15        FALSE
## 16        FALSE
## 17         TRUE
## 18        FALSE
## 19        FALSE
## 20        FALSE
## 21        FALSE
## 22        FALSE
## 23        FALSE
## 24        FALSE
## 25        FALSE
## 26        FALSE
## 27        FALSE
## 28        FALSE
## 29        FALSE
## 30        FALSE
## 31        FALSE
## 32        FALSE
## 33        FALSE
## 34        FALSE
## 35        FALSE
## 36        FALSE
## 37        FALSE
## 38        FALSE
## 39        FALSE
## 40        FALSE
## 41        FALSE
## 42        FALSE
## 43         TRUE
## 44        FALSE
## 45        FALSE
## 46        FALSE
## 47        FALSE
## 48        FALSE
## 49        FALSE
## 50         TRUE
## 51        FALSE
## 52        FALSE
## 53        FALSE
## 54        FALSE
## 55        FALSE
## 56        FALSE
## 57        FALSE
## 58        FALSE
## 59        FALSE
## 60        FALSE
## 61        FALSE
## 62        FALSE
## 63        FALSE
## 64        FALSE
## 65        FALSE
## 66        FALSE
## 67        FALSE
## 68        FALSE
## 69        FALSE
## 70        FALSE
## 71        FALSE
## 72         TRUE
## 73        FALSE
## 74        FALSE
## 75        FALSE
## 76        FALSE
## 77        FALSE
## 78        FALSE
## 79        FALSE
## 80        FALSE
## 81        FALSE
## 82        FALSE
## 83        FALSE
## 84        FALSE
## 85        FALSE
## 86        FALSE
## 87         TRUE
## 88        FALSE
## 89        FALSE
## 90        FALSE
## 91        FALSE
## 92        FALSE
## 93        FALSE
## 94        FALSE
## 95        FALSE
## 96        FALSE
## 97        FALSE
## 98         TRUE
## 99         TRUE
## 100       FALSE
## 101       FALSE
## 102       FALSE
## 103       FALSE
## 104       FALSE
## 105       FALSE
## 106       FALSE
## 107       FALSE
## 108       FALSE
## 109       FALSE
## 110       FALSE
## 111       FALSE
## 112       FALSE
## 113       FALSE
## 114       FALSE
## 115       FALSE
## 116       FALSE
## 117       FALSE
## 118       FALSE
## 119       FALSE
## 120       FALSE
## 121       FALSE
## 122       FALSE
## 123       FALSE
## 124       FALSE
## 125       FALSE
## 126       FALSE
## 127       FALSE
## 128        TRUE
## 129       FALSE
## 130       FALSE
## 131       FALSE
## 132       FALSE
## 133       FALSE
## 134       FALSE
## 135       FALSE
## 136       FALSE
## 137       FALSE
## 138       FALSE
## 139       FALSE
## 140        TRUE
## 141       FALSE
## 142       FALSE
## 143       FALSE
## 144       FALSE
## 145       FALSE
## 146       FALSE
## 147       FALSE
## 148       FALSE
## 149       FALSE
## 150       FALSE