R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

1. Masukkan Data

numeric_data <- data.frame(
  Gender = c(1, 0, 0, 1, 1),
  Age = c(30.83, 58.67, 24.50, 27.83, 20.17),
  Debt = c(0.000, 4.460, 0.500, 1.540, 5.625),
  Married = c(1, 1, 1, 1, 1),
  BankCustomer = c(1, 1, 1, 1, 1),
  YearsEmployed = c(1.25, 3.04, 1.50, 3.75, 1.71),
  PriorDefault = c(1, 1, 1, 1, 1),
  Employed = c(1, 1, 0, 1, 0),
  CreditScore = c(1, 6, 0, 5, 0),
  DriversLicense = c(0, 0, 0, 1, 0),
  ZipCode = c(202, 43, 280, 100, 120),
  Income = c(0, 560, 824, 3, 0),
  Approved = c(1, 1, 1, 1, 1)
)

print(numeric_data)
##   Gender   Age  Debt Married BankCustomer YearsEmployed PriorDefault Employed
## 1      1 30.83 0.000       1            1          1.25            1        1
## 2      0 58.67 4.460       1            1          3.04            1        1
## 3      0 24.50 0.500       1            1          1.50            1        0
## 4      1 27.83 1.540       1            1          3.75            1        1
## 5      1 20.17 5.625       1            1          1.71            1        0
##   CreditScore DriversLicense ZipCode Income Approved
## 1           1              0     202      0        1
## 2           6              0      43    560        1
## 3           0              0     280    824        1
## 4           5              1     100      3        1
## 5           0              0     120      0        1

2. Eigen Value dan Eigen Vector

# menghapus kolom dengan sd 0
numeric_data_filtered <- numeric_data[, apply(numeric_data, 2, sd) > 0]

cov_matrix <- cov(numeric_data_filtered)

eigen_values <- eigen(cov_matrix)$values
eigen_vectors <- eigen(cov_matrix)$vectors

print("Eigenvalues:")
## [1] "Eigenvalues:"
print(eigen_values)
## [1]  1.529994e+05  7.738334e+03  7.511641e+01  4.764847e+00  4.928271e-16
## [6] -7.387569e-16 -3.028345e-15 -8.582818e-14 -6.296730e-13
print("Eigenvectors:")
## [1] "Eigenvectors:"
print(eigen_vectors)
##                [,1]          [,2]         [,3]         [,4]         [,5]
##  [1,]  1.353862e-03  0.0014530489 -0.005913574 -0.011182168  0.000000000
##  [2,] -1.289706e-02 -0.1315605673  0.978288786  0.134187032  0.003123694
##  [3,]  8.188103e-04 -0.0196051644 -0.127911661  0.628431417 -0.014229289
##  [4,]  3.179447e-04 -0.0090248237 -0.018393904 -0.327449291 -0.003321056
##  [5,]  4.517900e-04 -0.0026382137  0.045060511 -0.114428577  0.678436205
##  [6,]  3.495244e-05 -0.0271356684  0.083893765 -0.659599945 -0.308349386
##  [7,]  4.535469e-04 -0.0008272893 -0.013286134 -0.177410704  0.666622569
##  [8,] -8.349349e-02  0.9873755472  0.128136339  0.008616975 -0.005914059
##  [9,] -9.964233e-01 -0.0810520549 -0.023500980 -0.002217912  0.001042599
##                [,6]          [,7]          [,8]         [,9]
##  [1,]  0.9999180189  0.0000000000  0.000000e+00  0.000000000
##  [2,]  0.0074949240  0.0004432908 -4.882136e-02 -0.070857051
##  [3,]  0.0062987060  0.0136029009  2.625133e-01 -0.720407592
##  [4,] -0.0037579919 -0.6010410339 -5.394187e-01 -0.490009209
##  [5,] -0.0010099520 -0.4798459453  5.385001e-01  0.066009775
##  [6,] -0.0068408244  0.2348400263  4.991015e-01 -0.397209148
##  [7,] -0.0020619859  0.5942745170 -3.139597e-01 -0.268747484
##  [8,] -0.0004676045  0.0004916815  8.674865e-03 -0.038916602
##  [9,]  0.0013031231 -0.0001663741  6.737984e-05  0.003323394

3. Variance-Covariance Matrix

print("Variance-Covariance Matrix:")
## [1] "Variance-Covariance Matrix:"
print(cov_matrix)
##                   Gender         Age        Debt YearsEmployed  Employed
## Gender            0.3000   -4.592500   -0.027500     -0.010000   0.05000
## Age              -4.5925  231.361400    9.345663      6.999375   5.03250
## Debt             -0.0275    9.345663    6.187675      0.605225  -0.31875
## YearsEmployed    -0.0100    6.999375    0.605225      1.182050   0.32250
## Employed          0.0500    5.032500   -0.318750      0.322500   0.30000
## CreditScore      -0.3000   33.300000    1.340000      2.810000   1.20000
## DriversLicense    0.1000   -1.142500   -0.221250      0.375000   0.10000
## ZipCode          -6.2500 -831.032500 -161.461250    -73.207500 -25.50000
## Income         -207.3000 2046.972500 -112.313750    -42.775000 -67.30000
##                CreditScore DriversLicense    ZipCode      Income
## Gender               -0.30        0.10000    -6.2500   -207.3000
## Age                  33.30       -1.14250  -831.0325   2046.9725
## Debt                  1.34       -0.22125  -161.4613   -112.3137
## YearsEmployed         2.81        0.37500   -73.2075    -42.7750
## Employed              1.20        0.10000   -25.5000    -67.3000
## CreditScore           8.30        0.65000  -207.0000     11.5500
## DriversLicense        0.65        0.20000   -12.2500    -68.6000
## ZipCode            -207.00      -12.25000  8612.0000  12109.2500
## Income               11.55      -68.60000 12109.2500 151957.8000

4. Correlation Matrix

cor_matrix <- cor(numeric_data_filtered)

print("Correlation Matrix:")
## [1] "Correlation Matrix:"
print(cor_matrix)
##                     Gender        Age        Debt YearsEmployed   Employed
## Gender          1.00000000 -0.5512430 -0.02018405   -0.01679274  0.1666667
## Age            -0.55124300  1.0000000  0.24700224    0.42324895  0.6040567
## Debt           -0.02018405  0.2470022  1.00000000    0.22378717 -0.2339515
## YearsEmployed  -0.01679274  0.4232489  0.22378717    1.00000000  0.5415657
## Employed        0.16666667  0.6040567 -0.23395149    0.54156572  1.0000000
## CreditScore    -0.19011728  0.7599058  0.18698295    0.89711754  0.7604691
## DriversLicense  0.40824829 -0.1679561 -0.19888615    0.77125563  0.4082483
## ZipCode        -0.12296100 -0.5887359 -0.69944336   -0.72558057 -0.5016809
## Income         -0.97090598  0.3452272 -0.11582643   -0.10092775 -0.3152049
##                CreditScore DriversLicense    ZipCode      Income
## Gender         -0.19011728      0.4082483 -0.1229610 -0.97090598
## Age             0.75990576     -0.1679561 -0.5887359  0.34522724
## Debt            0.18698295     -0.1988861 -0.6994434 -0.11582643
## YearsEmployed   0.89711754      0.7712556 -0.7255806 -0.10092775
## Employed        0.76046910      0.4082483 -0.5016809 -0.31520488
## CreditScore     1.00000000      0.5044978 -0.7742466  0.01028446
## DriversLicense  0.50449784      1.0000000 -0.2951679 -0.39350261
## ZipCode        -0.77424657     -0.2951679  1.0000000  0.33473701
## Income          0.01028446     -0.3935026  0.3347370  1.00000000

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.