Pastikan sudah menginstall package-package berikut
install.packages("emmeans")
install.packages("multcomp")
install.packages("multcompView")
install.packages("knitr"
library("emmeans")
## Welcome to emmeans.
## Caution: You lose important information if you filter this package's results.
## See '? untidy'
library("multcomp")
## Loading required package: mvtnorm
## Loading required package: survival
## Loading required package: TH.data
## Loading required package: MASS
##
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
##
## geyser
library("multcompView")
library("knitr")
SOAL 1
Berikut ini adalah data hasil percobaan faktorial acak lengkap dengan menggunakan 2 faktor acak. Pada kasus ini, ingin diteliti pengaruh dari mesin dan operator terhadap kekuatan produk yang dihasilkan
1. Model linier serta keterangan dari setiap notasinya
2. Tuliskan hipotesis yang dapat diuji pada percobaan ini
3. Lakukan perhitungan untuk menyusun tabel ANOVA yang diperlukan dalam pengujian hipotesis pada nomor 2, gunakan taraf nyata 5%
library(readxl)
data_mesin_operator = read_xlsx("C:/Users/MUTHI'AH IFFA/Downloads/Semester 4/MPP/Minggu 5/Soal Tugas Mandiri 2 Metode Perancangan Percobaan.xlsx", sheet = "Sheet1")
data_mesin_operator
## # A tibble: 24 Ć 3
## operator jenis_mesin respon
## <dbl> <dbl> <dbl>
## 1 1 1 109
## 2 1 1 110
## 3 1 2 110
## 4 1 2 115
## 5 1 3 108
## 6 1 3 109
## 7 1 4 110
## 8 1 4 108
## 9 2 1 110
## 10 2 1 112
## # ā¹ 14 more rows
pengaruh utama faktor Operator
H0 : alpha_1 = alpha_2 = ⦠= alpha_a (faktor Operator tidak berpengaruh terhadap respon
H1 : setidaknya ada satu alpha_i != 0
pengaruh utama faktor Jenis Mesin
H0 : beta_1 = beta_2 = ⦠= beta_b (faktor Jenis Mesin tidak berpengaruh terhadap respon)
H1 : setidaknya ada satu beta_i != 0
pengaruh interaksi faktor Operator dengan faktor Jenis Mesin
H0 : (alpha betha)11 = (alpha betha)12= ⦠= (alpha betha)ab
H1 : setidaknya ada sepasang (i,j) (alpha betha)ij != 0
data_mesin_operator$operator = as.factor(data_mesin_operator$operator)
data_mesin_operator$jenis_mesin = as.factor(data_mesin_operator$jenis_mesin)
AnovaFakRAL<-aov(respon ~ operator*jenis_mesin, data = data_mesin_operator)
summary(AnovaFakRAL)
## Df Sum Sq Mean Sq F value Pr(>F)
## operator 2 160.33 80.17 21.143 0.000117 ***
## jenis_mesin 3 12.46 4.15 1.095 0.388753
## operator:jenis_mesin 6 44.67 7.44 1.963 0.150681
## Residuals 12 45.50 3.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qf(0.05,2,12,lower.tail = FALSE)
## [1] 3.885294
qf(0.05,3,12,lower.tail = FALSE)
## [1] 3.490295
interaction.plot(data_mesin_operator$jenis_mesin, data_mesin_operator$operator, data_mesin_operator$respon)
pastikan package āphiaā sudah terinstall
install.packages("phia")
str(data_mesin_operator)
## tibble [24 Ć 3] (S3: tbl_df/tbl/data.frame)
## $ operator : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 2 2 ...
## $ jenis_mesin: Factor w/ 4 levels "1","2","3","4": 1 1 2 2 3 3 4 4 1 1 ...
## $ respon : num [1:24] 109 110 110 115 108 109 110 108 110 112 ...
library(phia)
## Loading required package: car
## Loading required package: carData
model = lm(respon ~ operator*jenis_mesin,data = data_mesin_operator)
interaksi_mesin = interactionMeans(model)
plot(interaksi_mesin)
model_mesin = lm(respon ~ operator*jenis_mesin, data = data_mesin_operator)
model_mesin
##
## Call:
## lm(formula = respon ~ operator * jenis_mesin, data = data_mesin_operator)
##
## Coefficients:
## (Intercept) operator2 operator3
## 1.095e+02 1.500e+00 5.500e+00
## jenis_mesin2 jenis_mesin3 jenis_mesin4
## 3.000e+00 -1.000e+00 -5.000e-01
## operator2:jenis_mesin2 operator3:jenis_mesin2 operator2:jenis_mesin3
## -3.500e+00 -4.500e+00 8.690e-14
## operator3:jenis_mesin3 operator2:jenis_mesin4 operator3:jenis_mesin4
## 2.500e+00 2.500e+00 4.000e+00
plot(model_mesin)
knitr::kable(TukeyHSD(AnovaFakRAL, conf.level=.95)$`operator:jenis_mesin`)
diff | lwr | upr | p adj | |
---|---|---|---|---|
2:1-1:1 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
3:1-1:1 | 5.5 | -2.230766 | 13.230766 | 0.2769269 |
1:2-1:1 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
2:2-1:1 | 1.0 | -6.730766 | 8.730766 | 0.9999870 |
3:2-1:1 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
1:3-1:1 | -1.0 | -8.730766 | 6.730766 | 0.9999870 |
2:3-1:1 | 0.5 | -7.230766 | 8.230766 | 1.0000000 |
3:3-1:1 | 7.0 | -0.730766 | 14.730766 | 0.0898750 |
1:4-1:1 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
2:4-1:1 | 3.5 | -4.230766 | 11.230766 | 0.7937754 |
3:4-1:1 | 9.0 | 1.269234 | 16.730766 | 0.0178460 |
3:1-2:1 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
1:2-2:1 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
2:2-2:1 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
3:2-2:1 | 2.5 | -5.230766 | 10.230766 | 0.9664165 |
1:3-2:1 | -2.5 | -10.230766 | 5.230766 | 0.9664165 |
2:3-2:1 | -1.0 | -8.730766 | 6.730766 | 0.9999870 |
3:3-2:1 | 5.5 | -2.230766 | 13.230766 | 0.2769269 |
1:4-2:1 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
2:4-2:1 | 2.0 | -5.730766 | 9.730766 | 0.9931505 |
3:4-2:1 | 7.5 | -0.230766 | 15.230766 | 0.0602463 |
1:2-3:1 | -2.5 | -10.230766 | 5.230766 | 0.9664165 |
2:2-3:1 | -4.5 | -12.230766 | 3.230766 | 0.5149555 |
3:2-3:1 | -1.5 | -9.230766 | 6.230766 | 0.9993833 |
1:3-3:1 | -6.5 | -14.230766 | 1.230766 | 0.1328994 |
2:3-3:1 | -5.0 | -12.730766 | 2.730766 | 0.3847296 |
3:3-3:1 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
1:4-3:1 | -6.0 | -13.730766 | 1.730766 | 0.1938021 |
2:4-3:1 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
3:4-3:1 | 3.5 | -4.230766 | 11.230766 | 0.7937754 |
2:2-1:2 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
3:2-1:2 | 1.0 | -6.730766 | 8.730766 | 0.9999870 |
1:3-1:2 | -4.0 | -11.730766 | 3.730766 | 0.6575431 |
2:3-1:2 | -2.5 | -10.230766 | 5.230766 | 0.9664165 |
3:3-1:2 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
1:4-1:2 | -3.5 | -11.230766 | 4.230766 | 0.7937754 |
2:4-1:2 | 0.5 | -7.230766 | 8.230766 | 1.0000000 |
3:4-1:2 | 6.0 | -1.730766 | 13.730766 | 0.1938021 |
3:2-2:2 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
1:3-2:2 | -2.0 | -9.730766 | 5.730766 | 0.9931505 |
2:3-2:2 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
3:3-2:2 | 6.0 | -1.730766 | 13.730766 | 0.1938021 |
1:4-2:2 | -1.5 | -9.230766 | 6.230766 | 0.9993833 |
2:4-2:2 | 2.5 | -5.230766 | 10.230766 | 0.9664165 |
3:4-2:2 | 8.0 | 0.269234 | 15.730766 | 0.0401932 |
1:3-3:2 | -5.0 | -12.730766 | 2.730766 | 0.3847296 |
2:3-3:2 | -3.5 | -11.230766 | 4.230766 | 0.7937754 |
3:3-3:2 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
1:4-3:2 | -4.5 | -12.230766 | 3.230766 | 0.5149555 |
2:4-3:2 | -0.5 | -8.230766 | 7.230766 | 1.0000000 |
3:4-3:2 | 5.0 | -2.730766 | 12.730766 | 0.3847296 |
2:3-1:3 | 1.5 | -6.230766 | 9.230766 | 0.9993833 |
3:3-1:3 | 8.0 | 0.269234 | 15.730766 | 0.0401932 |
1:4-1:3 | 0.5 | -7.230766 | 8.230766 | 1.0000000 |
2:4-1:3 | 4.5 | -3.230766 | 12.230766 | 0.5149555 |
3:4-1:3 | 10.0 | 2.269234 | 17.730766 | 0.0080049 |
3:3-2:3 | 6.5 | -1.230766 | 14.230766 | 0.1328994 |
1:4-2:3 | -1.0 | -8.730766 | 6.730766 | 0.9999870 |
2:4-2:3 | 3.0 | -4.730766 | 10.730766 | 0.9013973 |
3:4-2:3 | 8.5 | 0.769234 | 16.230766 | 0.0267714 |
1:4-3:3 | -7.5 | -15.230766 | 0.230766 | 0.0602463 |
2:4-3:3 | -3.5 | -11.230766 | 4.230766 | 0.7937754 |
3:4-3:3 | 2.0 | -5.730766 | 9.730766 | 0.9931505 |
2:4-1:4 | 4.0 | -3.730766 | 11.730766 | 0.6575431 |
3:4-1:4 | 9.5 | 1.769234 | 17.230766 | 0.0119280 |
3:4-2:4 | 5.5 | -2.230766 | 13.230766 | 0.2769269 |
# Model ANOVA
AnovaFakRAL_mesin = aov(respon ~ operator*jenis_mesin, data = data_mesin_operator)
# Hitung emmeans (Estimated Marginal Means)
tukey_mesin_operator <- emmeans(AnovaFakRAL_mesin, ~ operator:jenis_mesin)
# Compact Letter Display (CLD) dari hasil Tukey
cld_results <- cld(tukey_mesin_operator, alpha = 0.05, Letters = letters, adjust = "tukey")
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
# Menampilkan hasil dalam tabel rapi
kable(cld_results, digits = 3, caption = "Hasil Compact Letter Display (CLD) untuk Operator dan Jenis Mesin")
operator | jenis_mesin | emmean | SE | df | lower.CL | upper.CL | .group | |
---|---|---|---|---|---|---|---|---|
7 | 1 | 3 | 108.5 | 1.377 | 12 | 103.661 | 113.339 | a |
10 | 1 | 4 | 109.0 | 1.377 | 12 | 104.161 | 113.839 | ab |
1 | 1 | 1 | 109.5 | 1.377 | 12 | 104.661 | 114.339 | ab |
8 | 2 | 3 | 110.0 | 1.377 | 12 | 105.161 | 114.839 | ab |
5 | 2 | 2 | 110.5 | 1.377 | 12 | 105.661 | 115.339 | ab |
2 | 2 | 1 | 111.0 | 1.377 | 12 | 106.161 | 115.839 | abc |
4 | 1 | 2 | 112.5 | 1.377 | 12 | 107.661 | 117.339 | abc |
11 | 2 | 4 | 113.0 | 1.377 | 12 | 108.161 | 117.839 | abc |
6 | 3 | 2 | 113.5 | 1.377 | 12 | 108.661 | 118.339 | abc |
3 | 3 | 1 | 115.0 | 1.377 | 12 | 110.161 | 119.839 | abc |
9 | 3 | 3 | 116.5 | 1.377 | 12 | 111.661 | 121.339 | bc |
12 | 3 | 4 | 118.5 | 1.377 | 12 | 113.661 | 123.339 | c |
operator-jenis_mesin yang memiliki huruf yang sama berarti dia tidak berbeda secara signifikan.
kelompok BERBEDA SIGNIFIKAN
(1-3) (a) berbeda signifikan dengan (3-4) (c)
(1-3) (a) berbeda signifikan dengan (3-3) (bc)
(1-3) (a) berbeda signifikan dengan (3-1) (abc)
(3-4) (c) berbeda signifikan dengan (1-1), (2-1), (1-2), (2-4), (3-2), (3-1), (3-3) (abc)
kelompok TIDAK BERBEDA SIGNIFIKAN
(1-3) (a) tidak berbeda signifikan dengan (1-4) (ab)
(1-3) (a) tidak berbeda signifikan dengan (1-1) (ab)
(1-4) (ab) tidak berbeda signifikan dengan (2-3), (2-2), (2-1), (1-2) (abc)
(3-3) (bc) tidak berbeda signifikan dengan (3-1) (abc)
(3-1) (abc) tidak berbeda signifikan dengan banyak kelompok lain yang juga āabcā
model_mesin = lm(respon ~ operator, data = data_mesin_operator)
emm = emmeans(model_mesin, ~ operator)
cld_result = cld(emm, alpha = 0.05, Letters = letters, adjust = "tukey")
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
kable(cld_result)
operator | emmean | SE | df | lower.CL | upper.CL | .group |
---|---|---|---|---|---|---|
1 | 109.875 | 0.7815773 | 21 | 107.8479 | 111.9021 | a |
2 | 111.125 | 0.7815773 | 21 | 109.0979 | 113.1521 | a |
3 | 115.875 | 0.7815773 | 21 | 113.8479 | 117.9021 | b |
hasil Uji Tukey menunjukkan bahwa ada perbedaan yang signifikan antara Operator 1 dengan Operator 3 dan Operator 2 dan Operator 3
levels(data_mesin_operator$jenis_mesin)
## [1] "1" "2" "3" "4"
contrasts(data_mesin_operator$jenis_mesin) = contr.poly(4)
AnovaFakRAL2<-aov(respon ~ operator + jenis_mesin + operator:jenis_mesin, data = data_mesin_operator)
summary.aov(AnovaFakRAL2,split=list(jenis_mesin = list("Linear"=1,"Kuadratik"=2,"Kubik"=3,"Kuartik"=4)))
## Df Sum Sq Mean Sq F value Pr(>F)
## operator 2 160.33 80.17 21.143 0.000117 ***
## jenis_mesin 3 12.46 4.15 1.095 0.388753
## jenis_mesin: Linear 1 6.07 6.07 1.602 0.229615
## jenis_mesin: Kuadratik 1 3.38 3.38 0.890 0.364056
## jenis_mesin: Kubik 1 3.01 3.01 0.793 0.390582
## jenis_mesin: Kuartik 1
## operator:jenis_mesin 6 44.67 7.44 1.963 0.150681
## operator:jenis_mesin: Linear 2 18.20 9.10 2.400 0.132810
## operator:jenis_mesin: Kuadratik 2 12.00 6.00 1.582 0.245506
## operator:jenis_mesin: Kubik 2 14.47 7.23 1.908 0.190813
## operator:jenis_mesin: Kuartik 0 0.00
## Residuals 12 45.50 3.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SOAL 2
library(readxl)
data_nitrogen = read_xlsx("C:/Users/MUTHI'AH IFFA/Downloads/Semester 4/MPP/Minggu 5/Soal Tugas Mandiri 2 Metode Perancangan Percobaan.xlsx", sheet = "Sheet3")
data_nitrogen
## # A tibble: 45 Ć 3
## varietas nitrogen respon
## <chr> <chr> <dbl>
## 1 V1 N1 9
## 2 V1 N1 9
## 3 V1 N1 10
## 4 V1 N2 12
## 5 V1 N2 13
## 6 V1 N2 12
## 7 V1 N3 13
## 8 V1 N3 15
## 9 V1 N3 14
## 10 V1 N4 18
## # ā¹ 35 more rows
pengaruh utama faktor Varietas
H0 : alpha_1 = alpha_2 = ⦠= alpha_a (faktor Varietas tidak berpengaruh terhadap respon
H1 : setidaknya ada satu alpha_i != 0
pengaruh utama faktor Nitrogen
H0 : beta_1 = beta_2 = ⦠= beta_b (faktor Nitrogen tidak berpengaruh terhadap respon)
H1 : setidaknya ada satu beta_i != 0
pengaruh interaksi faktor Varietas dengan faktor Nitrogen
H0 : (alpha betha)11 = (alpha betha)12= ⦠= alpha betha)ab
H1 : setidaknya ada sepasang (i,j) (alpha betha)ij != 0
data_nitrogen$varietas = as.factor(data_nitrogen$varietas)
data_nitrogen$nitrogen = as.factor(data_nitrogen$nitrogen)
AnovaFakRAL_nitro = aov(respon ~ varietas*nitrogen, data = data_nitrogen)
summary(AnovaFakRAL_nitro)
## Df Sum Sq Mean Sq F value Pr(>F)
## varietas 2 36.13 18.07 3.781 0.0343 *
## nitrogen 4 252.31 63.08 13.202 2.57e-06 ***
## varietas:nitrogen 8 67.42 8.43 1.764 0.1242
## Residuals 30 143.33 4.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qf(0.05,2,30,lower.tail = FALSE)
## [1] 3.31583
qf(0.05,4,30,lower.tail = FALSE)
## [1] 2.689628
interaction.plot(data_nitrogen$nitrogen, data_nitrogen$varietas, data_nitrogen$respon)
library(phia)
interaksi2 = interactionMeans(model)
plot(interaksi2)
model_nitro = lm(respon ~ varietas*nitrogen, data = data_nitrogen)
model_nitro
##
## Call:
## lm(formula = respon ~ varietas * nitrogen, data = data_nitrogen)
##
## Coefficients:
## (Intercept) varietasV2 varietasV3
## 9.333e+00 -1.000e+00 -6.667e-01
## nitrogenN2 nitrogenN3 nitrogenN4
## 3.000e+00 4.667e+00 1.000e+01
## nitrogenN5 varietasV2:nitrogenN2 varietasV3:nitrogenN2
## 3.000e+00 -1.667e+00 -2.667e+00
## varietasV2:nitrogenN3 varietasV3:nitrogenN3 varietasV2:nitrogenN4
## 5.666e-16 3.333e-01 -5.667e+00
## varietasV3:nitrogenN4 varietasV2:nitrogenN5 varietasV3:nitrogenN5
## -4.333e+00 3.000e+00 3.333e-01
plot(model_nitro)
knitr::kable(TukeyHSD(AnovaFakRAL_nitro, conf.level=.95)$`varietas:nitrogen`)
diff | lwr | upr | p adj | |
---|---|---|---|---|
V2:N1-V1:N1 | -1.0000000 | -7.5766677 | 5.5766677 | 0.9999993 |
V3:N1-V1:N1 | -0.6666667 | -7.2433344 | 5.9100011 | 1.0000000 |
V1:N2-V1:N1 | 3.0000000 | -3.5766677 | 9.5766677 | 0.9230960 |
V2:N2-V1:N1 | 0.3333333 | -6.2433344 | 6.9100011 | 1.0000000 |
V3:N2-V1:N1 | -0.3333333 | -6.9100011 | 6.2433344 | 1.0000000 |
V1:N3-V1:N1 | 4.6666667 | -1.9100011 | 11.2433344 | 0.3993134 |
V2:N3-V1:N1 | 3.6666667 | -2.9100011 | 10.2433344 | 0.7521296 |
V3:N3-V1:N1 | 4.3333333 | -2.2433344 | 10.9100011 | 0.5146870 |
V1:N4-V1:N1 | 10.0000000 | 3.4233323 | 16.5766677 | 0.0003494 |
V2:N4-V1:N1 | 3.3333333 | -3.2433344 | 9.9100011 | 0.8506683 |
V3:N4-V1:N1 | 5.0000000 | -1.5766677 | 11.5766677 | 0.2980905 |
V1:N5-V1:N1 | 3.0000000 | -3.5766677 | 9.5766677 | 0.9230960 |
V2:N5-V1:N1 | 5.0000000 | -1.5766677 | 11.5766677 | 0.2980905 |
V3:N5-V1:N1 | 2.6666667 | -3.9100011 | 9.2433344 | 0.9676107 |
V3:N1-V2:N1 | 0.3333333 | -6.2433344 | 6.9100011 | 1.0000000 |
V1:N2-V2:N1 | 4.0000000 | -2.5766677 | 10.5766677 | 0.6361103 |
V2:N2-V2:N1 | 1.3333333 | -5.2433344 | 7.9100011 | 0.9999735 |
V3:N2-V2:N1 | 0.6666667 | -5.9100011 | 7.2433344 | 1.0000000 |
V1:N3-V2:N1 | 5.6666667 | -0.9100011 | 12.2433344 | 0.1503609 |
V2:N3-V2:N1 | 4.6666667 | -1.9100011 | 11.2433344 | 0.3993134 |
V3:N3-V2:N1 | 5.3333333 | -1.2433344 | 11.9100011 | 0.2149657 |
V1:N4-V2:N1 | 11.0000000 | 4.4233323 | 17.5766677 | 0.0000761 |
V2:N4-V2:N1 | 4.3333333 | -2.2433344 | 10.9100011 | 0.5146870 |
V3:N4-V2:N1 | 6.0000000 | -0.5766677 | 12.5766677 | 0.1024079 |
V1:N5-V2:N1 | 4.0000000 | -2.5766677 | 10.5766677 | 0.6361103 |
V2:N5-V2:N1 | 6.0000000 | -0.5766677 | 12.5766677 | 0.1024079 |
V3:N5-V2:N1 | 3.6666667 | -2.9100011 | 10.2433344 | 0.7521296 |
V1:N2-V3:N1 | 3.6666667 | -2.9100011 | 10.2433344 | 0.7521296 |
V2:N2-V3:N1 | 1.0000000 | -5.5766677 | 7.5766677 | 0.9999993 |
V3:N2-V3:N1 | 0.3333333 | -6.2433344 | 6.9100011 | 1.0000000 |
V1:N3-V3:N1 | 5.3333333 | -1.2433344 | 11.9100011 | 0.2149657 |
V2:N3-V3:N1 | 4.3333333 | -2.2433344 | 10.9100011 | 0.5146870 |
V3:N3-V3:N1 | 5.0000000 | -1.5766677 | 11.5766677 | 0.2980905 |
V1:N4-V3:N1 | 10.6666667 | 4.0899989 | 17.2433344 | 0.0001265 |
V2:N4-V3:N1 | 4.0000000 | -2.5766677 | 10.5766677 | 0.6361103 |
V3:N4-V3:N1 | 5.6666667 | -0.9100011 | 12.2433344 | 0.1503609 |
V1:N5-V3:N1 | 3.6666667 | -2.9100011 | 10.2433344 | 0.7521296 |
V2:N5-V3:N1 | 5.6666667 | -0.9100011 | 12.2433344 | 0.1503609 |
V3:N5-V3:N1 | 3.3333333 | -3.2433344 | 9.9100011 | 0.8506683 |
V2:N2-V1:N2 | -2.6666667 | -9.2433344 | 3.9100011 | 0.9676107 |
V3:N2-V1:N2 | -3.3333333 | -9.9100011 | 3.2433344 | 0.8506683 |
V1:N3-V1:N2 | 1.6666667 | -4.9100011 | 8.2433344 | 0.9996482 |
V2:N3-V1:N2 | 0.6666667 | -5.9100011 | 7.2433344 | 1.0000000 |
V3:N3-V1:N2 | 1.3333333 | -5.2433344 | 7.9100011 | 0.9999735 |
V1:N4-V1:N2 | 7.0000000 | 0.4233323 | 13.5766677 | 0.0285405 |
V2:N4-V1:N2 | 0.3333333 | -6.2433344 | 6.9100011 | 1.0000000 |
V3:N4-V1:N2 | 2.0000000 | -4.5766677 | 8.5766677 | 0.9975755 |
V1:N5-V1:N2 | 0.0000000 | -6.5766677 | 6.5766677 | 1.0000000 |
V2:N5-V1:N2 | 2.0000000 | -4.5766677 | 8.5766677 | 0.9975755 |
V3:N5-V1:N2 | -0.3333333 | -6.9100011 | 6.2433344 | 1.0000000 |
V3:N2-V2:N2 | -0.6666667 | -7.2433344 | 5.9100011 | 1.0000000 |
V1:N3-V2:N2 | 4.3333333 | -2.2433344 | 10.9100011 | 0.5146870 |
V2:N3-V2:N2 | 3.3333333 | -3.2433344 | 9.9100011 | 0.8506683 |
V3:N3-V2:N2 | 4.0000000 | -2.5766677 | 10.5766677 | 0.6361103 |
V1:N4-V2:N2 | 9.6666667 | 3.0899989 | 16.2433344 | 0.0005801 |
V2:N4-V2:N2 | 3.0000000 | -3.5766677 | 9.5766677 | 0.9230960 |
V3:N4-V2:N2 | 4.6666667 | -1.9100011 | 11.2433344 | 0.3993134 |
V1:N5-V2:N2 | 2.6666667 | -3.9100011 | 9.2433344 | 0.9676107 |
V2:N5-V2:N2 | 4.6666667 | -1.9100011 | 11.2433344 | 0.3993134 |
V3:N5-V2:N2 | 2.3333333 | -4.2433344 | 8.9100011 | 0.9894840 |
V1:N3-V3:N2 | 5.0000000 | -1.5766677 | 11.5766677 | 0.2980905 |
V2:N3-V3:N2 | 4.0000000 | -2.5766677 | 10.5766677 | 0.6361103 |
V3:N3-V3:N2 | 4.6666667 | -1.9100011 | 11.2433344 | 0.3993134 |
V1:N4-V3:N2 | 10.3333333 | 3.7566656 | 16.9100011 | 0.0002102 |
V2:N4-V3:N2 | 3.6666667 | -2.9100011 | 10.2433344 | 0.7521296 |
V3:N4-V3:N2 | 5.3333333 | -1.2433344 | 11.9100011 | 0.2149657 |
V1:N5-V3:N2 | 3.3333333 | -3.2433344 | 9.9100011 | 0.8506683 |
V2:N5-V3:N2 | 5.3333333 | -1.2433344 | 11.9100011 | 0.2149657 |
V3:N5-V3:N2 | 3.0000000 | -3.5766677 | 9.5766677 | 0.9230960 |
V2:N3-V1:N3 | -1.0000000 | -7.5766677 | 5.5766677 | 0.9999993 |
V3:N3-V1:N3 | -0.3333333 | -6.9100011 | 6.2433344 | 1.0000000 |
V1:N4-V1:N3 | 5.3333333 | -1.2433344 | 11.9100011 | 0.2149657 |
V2:N4-V1:N3 | -1.3333333 | -7.9100011 | 5.2433344 | 0.9999735 |
V3:N4-V1:N3 | 0.3333333 | -6.2433344 | 6.9100011 | 1.0000000 |
V1:N5-V1:N3 | -1.6666667 | -8.2433344 | 4.9100011 | 0.9996482 |
V2:N5-V1:N3 | 0.3333333 | -6.2433344 | 6.9100011 | 1.0000000 |
V3:N5-V1:N3 | -2.0000000 | -8.5766677 | 4.5766677 | 0.9975755 |
V3:N3-V2:N3 | 0.6666667 | -5.9100011 | 7.2433344 | 1.0000000 |
V1:N4-V2:N3 | 6.3333333 | -0.2433344 | 12.9100011 | 0.0681600 |
V2:N4-V2:N3 | -0.3333333 | -6.9100011 | 6.2433344 | 1.0000000 |
V3:N4-V2:N3 | 1.3333333 | -5.2433344 | 7.9100011 | 0.9999735 |
V1:N5-V2:N3 | -0.6666667 | -7.2433344 | 5.9100011 | 1.0000000 |
V2:N5-V2:N3 | 1.3333333 | -5.2433344 | 7.9100011 | 0.9999735 |
V3:N5-V2:N3 | -1.0000000 | -7.5766677 | 5.5766677 | 0.9999993 |
V1:N4-V3:N3 | 5.6666667 | -0.9100011 | 12.2433344 | 0.1503609 |
V2:N4-V3:N3 | -1.0000000 | -7.5766677 | 5.5766677 | 0.9999993 |
V3:N4-V3:N3 | 0.6666667 | -5.9100011 | 7.2433344 | 1.0000000 |
V1:N5-V3:N3 | -1.3333333 | -7.9100011 | 5.2433344 | 0.9999735 |
V2:N5-V3:N3 | 0.6666667 | -5.9100011 | 7.2433344 | 1.0000000 |
V3:N5-V3:N3 | -1.6666667 | -8.2433344 | 4.9100011 | 0.9996482 |
V2:N4-V1:N4 | -6.6666667 | -13.2433344 | -0.0899989 | 0.0444782 |
V3:N4-V1:N4 | -5.0000000 | -11.5766677 | 1.5766677 | 0.2980905 |
V1:N5-V1:N4 | -7.0000000 | -13.5766677 | -0.4233323 | 0.0285405 |
V2:N5-V1:N4 | -5.0000000 | -11.5766677 | 1.5766677 | 0.2980905 |
V3:N5-V1:N4 | -7.3333333 | -13.9100011 | -0.7566656 | 0.0180556 |
V3:N4-V2:N4 | 1.6666667 | -4.9100011 | 8.2433344 | 0.9996482 |
V1:N5-V2:N4 | -0.3333333 | -6.9100011 | 6.2433344 | 1.0000000 |
V2:N5-V2:N4 | 1.6666667 | -4.9100011 | 8.2433344 | 0.9996482 |
V3:N5-V2:N4 | -0.6666667 | -7.2433344 | 5.9100011 | 1.0000000 |
V1:N5-V3:N4 | -2.0000000 | -8.5766677 | 4.5766677 | 0.9975755 |
V2:N5-V3:N4 | 0.0000000 | -6.5766677 | 6.5766677 | 1.0000000 |
V3:N5-V3:N4 | -2.3333333 | -8.9100011 | 4.2433344 | 0.9894840 |
V2:N5-V1:N5 | 2.0000000 | -4.5766677 | 8.5766677 | 0.9975755 |
V3:N5-V1:N5 | -0.3333333 | -6.9100011 | 6.2433344 | 1.0000000 |
V3:N5-V2:N5 | -2.3333333 | -8.9100011 | 4.2433344 | 0.9894840 |
# Model ANOVA
AnovaFakRAL_nitro = aov(respon ~ varietas * nitrogen, data = data_nitrogen)
# Hitung emmeans (Estimated Marginal Means)
tukey_var_nitro <- emmeans(AnovaFakRAL_nitro, ~ varietas:nitrogen)
# Compact Letter Display (CLD) dari hasil Tukey
cld_results <- cld(tukey_var_nitro, alpha = 0.05, Letters = letters, adjust = "tukey")
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
# Menampilkan hasil dalam tabel rapi
kable(cld_results, digits = 3, caption = "Hasil Compact Letter Display (CLD) untuk Varietas dan Nitrogen")
varietas | nitrogen | emmean | SE | df | lower.CL | upper.CL | .group | |
---|---|---|---|---|---|---|---|---|
2 | V2 | N1 | 8.333 | 1.262 | 30 | 4.321 | 12.346 | a |
3 | V3 | N1 | 8.667 | 1.262 | 30 | 4.654 | 12.679 | a |
6 | V3 | N2 | 9.000 | 1.262 | 30 | 4.987 | 13.013 | a |
1 | V1 | N1 | 9.333 | 1.262 | 30 | 5.321 | 13.346 | a |
5 | V2 | N2 | 9.667 | 1.262 | 30 | 5.654 | 13.679 | a |
15 | V3 | N5 | 12.000 | 1.262 | 30 | 7.987 | 16.013 | a |
4 | V1 | N2 | 12.333 | 1.262 | 30 | 8.321 | 16.346 | a |
13 | V1 | N5 | 12.333 | 1.262 | 30 | 8.321 | 16.346 | a |
11 | V2 | N4 | 12.667 | 1.262 | 30 | 8.654 | 16.679 | a |
8 | V2 | N3 | 13.000 | 1.262 | 30 | 8.987 | 17.013 | ab |
9 | V3 | N3 | 13.667 | 1.262 | 30 | 9.654 | 17.679 | ab |
7 | V1 | N3 | 14.000 | 1.262 | 30 | 9.987 | 18.013 | ab |
14 | V2 | N5 | 14.333 | 1.262 | 30 | 10.321 | 18.346 | ab |
12 | V3 | N4 | 14.333 | 1.262 | 30 | 10.321 | 18.346 | ab |
10 | V1 | N4 | 19.333 | 1.262 | 30 | 15.321 | 23.346 | b |
kelompok BERBEDA SIGNIFIKAN
kelompok TIDAK BERBEDA SIGNIFIKAN
(V2-N1) (a) tidak berbeda signifikan dengan (V3-N2) (a)
(V3-N2) (a) tidak berbeda signifikan dengan (V1-N1) (a)
(V1-N1) (a) tidak berbeda signifikan dengan (V2-N2) (a)
(V2-N2) (a) tidak berbeda signifikan dengan (V3-N5) (a)
(V3-N5) (a) tidak berbeda signifikan dengan (V1-N2) (a)
(V1-N2) (a) tidak berbeda signifikan dengan (V1-N5) (a)
(V1-N5) (a) tidak berbeda signifikan dengan (V2-N4) (a)
(V2-N3) (ab) tidak berbeda signifikan dengan (V3-N3) (ab)
(V3-N3) (ab) tidak berbeda signifikan dengan (V1-N3) (ab)
(V1-N3) (ab) tidak berbeda signifikan dengan (V2-N5) (ab)
(V2-N5) (ab) tidak berbeda signifikan dengan (V3-N4) (ab)
(V3-N4) (ab) tidak berbeda signifikan dengan (V1-N4) (b)
library("emmeans")
library("multcomp")
library("multcompView")
library("knitr")
model_nitro = lm(respon ~ varietas, data = data_nitrogen)
emm = emmeans(model_nitro, ~ varietas)
cld_result = cld(emm, alpha = 0.05, Letters = letters, adjust = "tukey")
## Note: adjust = "tukey" was changed to "sidak"
## because "tukey" is only appropriate for one set of pairwise comparisons
kable(cld_result)
varietas | emmean | SE | df | lower.CL | upper.CL | .group | |
---|---|---|---|---|---|---|---|
3 | V3 | 11.53333 | 0.8573368 | 42 | 9.401386 | 13.66528 | a |
2 | V2 | 11.60000 | 0.8573368 | 42 | 9.468053 | 13.73195 | a |
1 | V1 | 13.46667 | 0.8573368 | 42 | 11.334719 | 15.59861 | a |
pada kasus varietas dengan nitrogen hasil Uji Tukey menunjukkan bahwa tidak ada kelompok yang berbeda secara signifikan karena V1, V2, dan V3 memiliki huruf yang sama
levels(data_nitrogen$nitrogen)
## [1] "N1" "N2" "N3" "N4" "N5"
contrasts(data_nitrogen$nitrogen) = contr.poly(5)
AnovaFakRAL2<-aov(respon ~ varietas + nitrogen + varietas:nitrogen, data = data_nitrogen)
summary.aov(AnovaFakRAL2,split=list(nitrogen = list("Linear"=1,"Kuadratik"=2,"Kubik"=3,"Kuartik"=4)))
## Df Sum Sq Mean Sq F value Pr(>F)
## varietas 2 36.13 18.07 3.781 0.03431 *
## nitrogen 4 252.31 63.08 13.202 2.57e-06 ***
## nitrogen: Linear 1 160.00 160.00 33.488 2.53e-06 ***
## nitrogen: Kuadratik 1 58.70 58.70 12.286 0.00146 **
## nitrogen: Kubik 1 33.61 33.61 7.035 0.01265 *
## nitrogen: Kuartik 1 0.00 0.00 0.000 0.98558
## varietas:nitrogen 8 67.42 8.43 1.764 0.12425
## varietas:nitrogen: Linear 2 1.40 0.70 0.147 0.86433
## varietas:nitrogen: Kuadratik 2 19.06 9.53 1.995 0.15365
## varietas:nitrogen: Kubik 2 18.82 9.41 1.970 0.15712
## varietas:nitrogen: Kuartik 2 28.14 14.07 2.945 0.06798 .
## Residuals 30 143.33 4.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1