library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights13)

Create the code makes a table for each of the below questions.

1. join + filter - Which airplanes fly LGA to XNA (1 POINT)

LGA_to_XNA <- flights %>%
  filter(origin == "LGA", dest == "XNA") %>%
  left_join(planes, by = "tailnum")
head(LGA_to_XNA)
## # A tibble: 6 × 27
##   year.x month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1   2013     1     1      656            705        -9     1007            940
## 2   2013     1     1     1525           1530        -5     1934           1805
## 3   2013     1     1     1740           1745        -5     2158           2020
## 4   2013     1     2      656            705        -9     1014            940
## 5   2013     1     2     1531           1530         1     1846           1805
## 6   2013     1     2     1740           1745        -5     2035           2020
## # ℹ 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
## #   manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
## #   engine <chr>

2. join - Add the airline name to the flights table (1 POINT)

flights_with_airlines <- flights %>%
  left_join(airlines, by = "carrier") 
head(flights_with_airlines) 
## # A tibble: 6 × 20
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1  2013     1     1      517            515         2      830            819
## 2  2013     1     1      533            529         4      850            830
## 3  2013     1     1      542            540         2      923            850
## 4  2013     1     1      544            545        -1     1004           1022
## 5  2013     1     1      554            600        -6      812            837
## 6  2013     1     1      554            558        -4      740            728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>

3. join + select + distinct() - Which airports have no commercial flights (1 POINT)

no_commercial_flights <- airports %>%
 anti_join(flights, by = c("faa" = "dest")) %>%
  anti_join(flights, by = c("faa" = "origin")) %>%
  select(faa, name, lat, lon, alt, tz, dst) %>%
  distinct(faa, .keep_all = TRUE)
head(no_commercial_flights)
## # A tibble: 6 × 7
##   faa   name                             lat   lon   alt    tz dst  
##   <chr> <chr>                          <dbl> <dbl> <dbl> <dbl> <chr>
## 1 04G   Lansdowne Airport               41.1 -80.6  1044    -5 A    
## 2 06A   Moton Field Municipal Airport   32.5 -85.7   264    -6 A    
## 3 06C   Schaumburg Regional             42.0 -88.1   801    -6 A    
## 4 06N   Randall Airport                 41.4 -74.4   523    -5 A    
## 5 09J   Jekyll Island Airport           31.1 -81.4    11    -5 A    
## 6 0A9   Elizabethton Municipal Airport  36.4 -82.2  1593    -5 A