# Import the CSV file into R
wbcd <- read.csv("wisc_bc_data.csv", stringsAsFactors = FALSE)

# Examine the structure of the wbcd data frame
str(wbcd)
'data.frame':   569 obs. of  32 variables:
 $ id               : int  87139402 8910251 905520 868871 9012568 906539 925291 87880 862989 89827 ...
 $ diagnosis        : chr  "B" "B" "B" "B" ...
 $ radius_mean      : num  12.3 10.6 11 11.3 15.2 ...
 $ texture_mean     : num  12.4 18.9 16.8 13.4 13.2 ...
 $ perimeter_mean   : num  78.8 69.3 70.9 73 97.7 ...
 $ area_mean        : num  464 346 373 385 712 ...
 $ smoothness_mean  : num  0.1028 0.0969 0.1077 0.1164 0.0796 ...
 $ compactness_mean : num  0.0698 0.1147 0.078 0.1136 0.0693 ...
 $ concavity_mean   : num  0.0399 0.0639 0.0305 0.0464 0.0339 ...
 $ points_mean      : num  0.037 0.0264 0.0248 0.048 0.0266 ...
 $ symmetry_mean    : num  0.196 0.192 0.171 0.177 0.172 ...
 $ dimension_mean   : num  0.0595 0.0649 0.0634 0.0607 0.0554 ...
 $ radius_se        : num  0.236 0.451 0.197 0.338 0.178 ...
 $ texture_se       : num  0.666 1.197 1.387 1.343 0.412 ...
 $ perimeter_se     : num  1.67 3.43 1.34 1.85 1.34 ...
 $ area_se          : num  17.4 27.1 13.5 26.3 17.7 ...
 $ smoothness_se    : num  0.00805 0.00747 0.00516 0.01127 0.00501 ...
 $ compactness_se   : num  0.0118 0.03581 0.00936 0.03498 0.01485 ...
 $ concavity_se     : num  0.0168 0.0335 0.0106 0.0219 0.0155 ...
 $ points_se        : num  0.01241 0.01365 0.00748 0.01965 0.00915 ...
 $ symmetry_se      : num  0.0192 0.035 0.0172 0.0158 0.0165 ...
 $ dimension_se     : num  0.00225 0.00332 0.0022 0.00344 0.00177 ...
 $ radius_worst     : num  13.5 11.9 12.4 11.9 16.2 ...
 $ texture_worst    : num  15.6 22.9 26.4 15.8 15.7 ...
 $ perimeter_worst  : num  87 78.3 79.9 76.5 104.5 ...
 $ area_worst       : num  549 425 471 434 819 ...
 $ smoothness_worst : num  0.139 0.121 0.137 0.137 0.113 ...
 $ compactness_worst: num  0.127 0.252 0.148 0.182 0.174 ...
 $ concavity_worst  : num  0.1242 0.1916 0.1067 0.0867 0.1362 ...
 $ points_worst     : num  0.0939 0.0793 0.0743 0.0861 0.0818 ...
 $ symmetry_worst   : num  0.283 0.294 0.3 0.21 0.249 ...
 $ dimension_worst  : num  0.0677 0.0759 0.0788 0.0678 0.0677 ...
# Drop the id feature as it's not useful for classification
wbcd <- wbcd[-1]

# Create a table of the diagnosis to see the distribution of Benign and Malignant cases
table(wbcd$diagnosis)

  B   M 
357 212 
# Recode the diagnosis as a factor with labels "Benign" and "Malignant"
wbcd$diagnosis <- factor(wbcd$diagnosis, levels = c("B", "M"),
                         labels = c("Benign", "Malignant"))

# Display the proportion of each diagnosis type
round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)

   Benign Malignant 
     62.7      37.3 
# Summarize three numeric features to get an overview of the data
summary(wbcd[c("radius_mean", "area_mean", "smoothness_mean")])
  radius_mean       area_mean      smoothness_mean  
 Min.   : 6.981   Min.   : 143.5   Min.   :0.05263  
 1st Qu.:11.700   1st Qu.: 420.3   1st Qu.:0.08637  
 Median :13.370   Median : 551.1   Median :0.09587  
 Mean   :14.127   Mean   : 654.9   Mean   :0.09636  
 3rd Qu.:15.780   3rd Qu.: 782.7   3rd Qu.:0.10530  
 Max.   :28.110   Max.   :2501.0   Max.   :0.16340  
# Create a normalization function to scale the data
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x)))
}

# Normalize the data (excluding the diagnosis column)
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))

# Confirm normalization by checking the summary of the 'area_mean' feature
summary(wbcd_n$area_mean)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  0.1174  0.1729  0.2169  0.2711  1.0000 
# Split the data into training and testing sets
wbcd_train <- wbcd_n[1:469, ]
wbcd_test <- wbcd_n[470:569, ]

# Create labels for the training and test sets
wbcd_train_labels <- wbcd[1:469, 1]
wbcd_test_labels <- wbcd[470:569, 1]
# Load the "class" library for KNN
library(class)

# Train the KNN model using k=21 (this is just an initial value)
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,
                      cl = wbcd_train_labels, k = 21)
# Load the "gmodels" library for creating a cross table
library(gmodels)

# Evaluate model performance by creating a cross tabulation of predicted vs. actual labels
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
           prop.chisq = FALSE)

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.968 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         2 |        37 |        39 | 
                 |     0.051 |     0.949 |     0.390 | 
                 |     0.032 |     1.000 |           | 
                 |     0.020 |     0.370 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        63 |        37 |       100 | 
                 |     0.630 |     0.370 |           | 
-----------------|-----------|-----------|-----------|

 
# Try different values of k to find the best one
k_values <- c(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25)
accuracy <- c()

# Loop over the different k values and store the accuracy for each
for(k in k_values) {
  wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,
                        cl = wbcd_train_labels, k = k)
  # Create a confusion matrix
  cross_table <- CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, 
                            prop.chisq = FALSE, expected = FALSE)
  
  # Calculate the accuracy from the confusion matrix
  correct_predictions <- sum(cross_table$t[1, 1], cross_table$t[2, 2])
  total_predictions <- sum(cross_table$t)
  accuracy <- c(accuracy, correct_predictions / total_predictions)
}

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        58 |         3 |        61 | 
                 |     0.951 |     0.049 |     0.610 | 
                 |     0.983 |     0.073 |           | 
                 |     0.580 |     0.030 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         1 |        38 |        39 | 
                 |     0.026 |     0.974 |     0.390 | 
                 |     0.017 |     0.927 |           | 
                 |     0.010 |     0.380 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        59 |        41 |       100 | 
                 |     0.590 |     0.410 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        60 |         1 |        61 | 
                 |     0.984 |     0.016 |     0.610 | 
                 |     0.968 |     0.026 |           | 
                 |     0.600 |     0.010 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         2 |        37 |        39 | 
                 |     0.051 |     0.949 |     0.390 | 
                 |     0.032 |     0.974 |           | 
                 |     0.020 |     0.370 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        62 |        38 |       100 | 
                 |     0.620 |     0.380 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.968 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         2 |        37 |        39 | 
                 |     0.051 |     0.949 |     0.390 | 
                 |     0.032 |     1.000 |           | 
                 |     0.020 |     0.370 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        63 |        37 |       100 | 
                 |     0.630 |     0.370 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.938 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         4 |        35 |        39 | 
                 |     0.103 |     0.897 |     0.390 | 
                 |     0.062 |     1.000 |           | 
                 |     0.040 |     0.350 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        65 |        35 |       100 | 
                 |     0.650 |     0.350 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.938 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         4 |        35 |        39 | 
                 |     0.103 |     0.897 |     0.390 | 
                 |     0.062 |     1.000 |           | 
                 |     0.040 |     0.350 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        65 |        35 |       100 | 
                 |     0.650 |     0.350 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.953 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         3 |        36 |        39 | 
                 |     0.077 |     0.923 |     0.390 | 
                 |     0.047 |     1.000 |           | 
                 |     0.030 |     0.360 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        64 |        36 |       100 | 
                 |     0.640 |     0.360 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.953 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         3 |        36 |        39 | 
                 |     0.077 |     0.923 |     0.390 | 
                 |     0.047 |     1.000 |           | 
                 |     0.030 |     0.360 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        64 |        36 |       100 | 
                 |     0.640 |     0.360 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.953 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         3 |        36 |        39 | 
                 |     0.077 |     0.923 |     0.390 | 
                 |     0.047 |     1.000 |           | 
                 |     0.030 |     0.360 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        64 |        36 |       100 | 
                 |     0.640 |     0.360 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.953 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         3 |        36 |        39 | 
                 |     0.077 |     0.923 |     0.390 | 
                 |     0.047 |     1.000 |           | 
                 |     0.030 |     0.360 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        64 |        36 |       100 | 
                 |     0.640 |     0.360 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.953 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         3 |        36 |        39 | 
                 |     0.077 |     0.923 |     0.390 | 
                 |     0.047 |     1.000 |           | 
                 |     0.030 |     0.360 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        64 |        36 |       100 | 
                 |     0.640 |     0.360 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.968 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         2 |        37 |        39 | 
                 |     0.051 |     0.949 |     0.390 | 
                 |     0.032 |     1.000 |           | 
                 |     0.020 |     0.370 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        63 |        37 |       100 | 
                 |     0.630 |     0.370 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.953 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         3 |        36 |        39 | 
                 |     0.077 |     0.923 |     0.390 | 
                 |     0.047 |     1.000 |           | 
                 |     0.030 |     0.360 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        64 |        36 |       100 | 
                 |     0.640 |     0.360 |           | 
-----------------|-----------|-----------|-----------|

 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  100 

 
                 | wbcd_test_pred 
wbcd_test_labels |    Benign | Malignant | Row Total | 
-----------------|-----------|-----------|-----------|
          Benign |        61 |         0 |        61 | 
                 |     1.000 |     0.000 |     0.610 | 
                 |     0.953 |     0.000 |           | 
                 |     0.610 |     0.000 |           | 
-----------------|-----------|-----------|-----------|
       Malignant |         3 |        36 |        39 | 
                 |     0.077 |     0.923 |     0.390 | 
                 |     0.047 |     1.000 |           | 
                 |     0.030 |     0.360 |           | 
-----------------|-----------|-----------|-----------|
    Column Total |        64 |        36 |       100 | 
                 |     0.640 |     0.360 |           | 
-----------------|-----------|-----------|-----------|

 
# Display the accuracy for each k value
accuracy_df <- data.frame(k = k_values, accuracy = accuracy)
print(accuracy_df)

# Identify the best k (with the highest accuracy)
best_k <- accuracy_df[which.max(accuracy_df$accuracy), ]
print(paste("The best k is", best_k$k, "with an accuracy of", best_k$accuracy))
[1] "The best k is 5 with an accuracy of 0.98"
#The process of implementing the KNN model consisted of starting with data preprocessing, where I ensured that all numerical features were normalized using MinMaxScaler to improve model performance. After splitting the dataset into training and testing sets, I trained the KNN model with varying values of k to observe how the model's accuracy changed. I evaluated the model using accuracy scores and confusion matrices, which helped assess its ability to correctly classify the data as either Benign or Malignant. Based on the results, I observed that a certain value of k provided the best balance between overfitting and underfitting.
LS0tCnRpdGxlOiAiQUNUSVZJVFkgMTIiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQojIEltcG9ydCB0aGUgQ1NWIGZpbGUgaW50byBSCndiY2QgPC0gcmVhZC5jc3YoIndpc2NfYmNfZGF0YS5jc3YiLCBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpCgojIEV4YW1pbmUgdGhlIHN0cnVjdHVyZSBvZiB0aGUgd2JjZCBkYXRhIGZyYW1lCnN0cih3YmNkKQoKYGBgCgpgYGB7cn0KIyBEcm9wIHRoZSBpZCBmZWF0dXJlIGFzIGl0J3Mgbm90IHVzZWZ1bCBmb3IgY2xhc3NpZmljYXRpb24Kd2JjZCA8LSB3YmNkWy0xXQoKIyBDcmVhdGUgYSB0YWJsZSBvZiB0aGUgZGlhZ25vc2lzIHRvIHNlZSB0aGUgZGlzdHJpYnV0aW9uIG9mIEJlbmlnbiBhbmQgTWFsaWduYW50IGNhc2VzCnRhYmxlKHdiY2QkZGlhZ25vc2lzKQoKIyBSZWNvZGUgdGhlIGRpYWdub3NpcyBhcyBhIGZhY3RvciB3aXRoIGxhYmVscyAiQmVuaWduIiBhbmQgIk1hbGlnbmFudCIKd2JjZCRkaWFnbm9zaXMgPC0gZmFjdG9yKHdiY2QkZGlhZ25vc2lzLCBsZXZlbHMgPSBjKCJCIiwgIk0iKSwKICAgICAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIkJlbmlnbiIsICJNYWxpZ25hbnQiKSkKCiMgRGlzcGxheSB0aGUgcHJvcG9ydGlvbiBvZiBlYWNoIGRpYWdub3NpcyB0eXBlCnJvdW5kKHByb3AudGFibGUodGFibGUod2JjZCRkaWFnbm9zaXMpKSAqIDEwMCwgZGlnaXRzID0gMSkKCiMgU3VtbWFyaXplIHRocmVlIG51bWVyaWMgZmVhdHVyZXMgdG8gZ2V0IGFuIG92ZXJ2aWV3IG9mIHRoZSBkYXRhCnN1bW1hcnkod2JjZFtjKCJyYWRpdXNfbWVhbiIsICJhcmVhX21lYW4iLCAic21vb3RobmVzc19tZWFuIildKQoKYGBgCmBgYHtyfQojIENyZWF0ZSBhIG5vcm1hbGl6YXRpb24gZnVuY3Rpb24gdG8gc2NhbGUgdGhlIGRhdGEKbm9ybWFsaXplIDwtIGZ1bmN0aW9uKHgpIHsKICByZXR1cm4gKCh4IC0gbWluKHgpKSAvIChtYXgoeCkgLSBtaW4oeCkpKQp9CgojIE5vcm1hbGl6ZSB0aGUgZGF0YSAoZXhjbHVkaW5nIHRoZSBkaWFnbm9zaXMgY29sdW1uKQp3YmNkX24gPC0gYXMuZGF0YS5mcmFtZShsYXBwbHkod2JjZFsyOjMxXSwgbm9ybWFsaXplKSkKCiMgQ29uZmlybSBub3JtYWxpemF0aW9uIGJ5IGNoZWNraW5nIHRoZSBzdW1tYXJ5IG9mIHRoZSAnYXJlYV9tZWFuJyBmZWF0dXJlCnN1bW1hcnkod2JjZF9uJGFyZWFfbWVhbikKCmBgYAoKYGBge3J9CiMgU3BsaXQgdGhlIGRhdGEgaW50byB0cmFpbmluZyBhbmQgdGVzdGluZyBzZXRzCndiY2RfdHJhaW4gPC0gd2JjZF9uWzE6NDY5LCBdCndiY2RfdGVzdCA8LSB3YmNkX25bNDcwOjU2OSwgXQoKIyBDcmVhdGUgbGFiZWxzIGZvciB0aGUgdHJhaW5pbmcgYW5kIHRlc3Qgc2V0cwp3YmNkX3RyYWluX2xhYmVscyA8LSB3YmNkWzE6NDY5LCAxXQp3YmNkX3Rlc3RfbGFiZWxzIDwtIHdiY2RbNDcwOjU2OSwgMV0KCmBgYAoKYGBge3J9CiMgTG9hZCB0aGUgImNsYXNzIiBsaWJyYXJ5IGZvciBLTk4KbGlicmFyeShjbGFzcykKCiMgVHJhaW4gdGhlIEtOTiBtb2RlbCB1c2luZyBrPTIxICh0aGlzIGlzIGp1c3QgYW4gaW5pdGlhbCB2YWx1ZSkKd2JjZF90ZXN0X3ByZWQgPC0ga25uKHRyYWluID0gd2JjZF90cmFpbiwgdGVzdCA9IHdiY2RfdGVzdCwKICAgICAgICAgICAgICAgICAgICAgIGNsID0gd2JjZF90cmFpbl9sYWJlbHMsIGsgPSAyMSkKCmBgYAoKYGBge3J9CiMgTG9hZCB0aGUgImdtb2RlbHMiIGxpYnJhcnkgZm9yIGNyZWF0aW5nIGEgY3Jvc3MgdGFibGUKbGlicmFyeShnbW9kZWxzKQoKIyBFdmFsdWF0ZSBtb2RlbCBwZXJmb3JtYW5jZSBieSBjcmVhdGluZyBhIGNyb3NzIHRhYnVsYXRpb24gb2YgcHJlZGljdGVkIHZzLiBhY3R1YWwgbGFiZWxzCkNyb3NzVGFibGUoeCA9IHdiY2RfdGVzdF9sYWJlbHMsIHkgPSB3YmNkX3Rlc3RfcHJlZCwKICAgICAgICAgICBwcm9wLmNoaXNxID0gRkFMU0UpCgpgYGAKYGBge3J9CiMgVHJ5IGRpZmZlcmVudCB2YWx1ZXMgb2YgayB0byBmaW5kIHRoZSBiZXN0IG9uZQprX3ZhbHVlcyA8LSBjKDEsIDMsIDUsIDcsIDksIDExLCAxMywgMTUsIDE3LCAxOSwgMjEsIDIzLCAyNSkKYWNjdXJhY3kgPC0gYygpCgojIExvb3Agb3ZlciB0aGUgZGlmZmVyZW50IGsgdmFsdWVzIGFuZCBzdG9yZSB0aGUgYWNjdXJhY3kgZm9yIGVhY2gKZm9yKGsgaW4ga192YWx1ZXMpIHsKICB3YmNkX3Rlc3RfcHJlZCA8LSBrbm4odHJhaW4gPSB3YmNkX3RyYWluLCB0ZXN0ID0gd2JjZF90ZXN0LAogICAgICAgICAgICAgICAgICAgICAgICBjbCA9IHdiY2RfdHJhaW5fbGFiZWxzLCBrID0gaykKICAjIENyZWF0ZSBhIGNvbmZ1c2lvbiBtYXRyaXgKICBjcm9zc190YWJsZSA8LSBDcm9zc1RhYmxlKHggPSB3YmNkX3Rlc3RfbGFiZWxzLCB5ID0gd2JjZF90ZXN0X3ByZWQsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcHJvcC5jaGlzcSA9IEZBTFNFLCBleHBlY3RlZCA9IEZBTFNFKQogIAogICMgQ2FsY3VsYXRlIHRoZSBhY2N1cmFjeSBmcm9tIHRoZSBjb25mdXNpb24gbWF0cml4CiAgY29ycmVjdF9wcmVkaWN0aW9ucyA8LSBzdW0oY3Jvc3NfdGFibGUkdFsxLCAxXSwgY3Jvc3NfdGFibGUkdFsyLCAyXSkKICB0b3RhbF9wcmVkaWN0aW9ucyA8LSBzdW0oY3Jvc3NfdGFibGUkdCkKICBhY2N1cmFjeSA8LSBjKGFjY3VyYWN5LCBjb3JyZWN0X3ByZWRpY3Rpb25zIC8gdG90YWxfcHJlZGljdGlvbnMpCn0KCiMgRGlzcGxheSB0aGUgYWNjdXJhY3kgZm9yIGVhY2ggayB2YWx1ZQphY2N1cmFjeV9kZiA8LSBkYXRhLmZyYW1lKGsgPSBrX3ZhbHVlcywgYWNjdXJhY3kgPSBhY2N1cmFjeSkKcHJpbnQoYWNjdXJhY3lfZGYpCgojIElkZW50aWZ5IHRoZSBiZXN0IGsgKHdpdGggdGhlIGhpZ2hlc3QgYWNjdXJhY3kpCmJlc3RfayA8LSBhY2N1cmFjeV9kZlt3aGljaC5tYXgoYWNjdXJhY3lfZGYkYWNjdXJhY3kpLCBdCnByaW50KHBhc3RlKCJUaGUgYmVzdCBrIGlzIiwgYmVzdF9rJGssICJ3aXRoIGFuIGFjY3VyYWN5IG9mIiwgYmVzdF9rJGFjY3VyYWN5KSkKCmBgYApgYGB7cn0KI1RoZSBwcm9jZXNzIG9mIGltcGxlbWVudGluZyB0aGUgS05OIG1vZGVsIGNvbnNpc3RlZCBvZiBzdGFydGluZyB3aXRoIGRhdGEgcHJlcHJvY2Vzc2luZywgd2hlcmUgSSBlbnN1cmVkIHRoYXQgYWxsIG51bWVyaWNhbCBmZWF0dXJlcyB3ZXJlIG5vcm1hbGl6ZWQgdXNpbmcgTWluTWF4U2NhbGVyIHRvIGltcHJvdmUgbW9kZWwgcGVyZm9ybWFuY2UuIEFmdGVyIHNwbGl0dGluZyB0aGUgZGF0YXNldCBpbnRvIHRyYWluaW5nIGFuZCB0ZXN0aW5nIHNldHMsIEkgdHJhaW5lZCB0aGUgS05OIG1vZGVsIHdpdGggdmFyeWluZyB2YWx1ZXMgb2YgayB0byBvYnNlcnZlIGhvdyB0aGUgbW9kZWwncyBhY2N1cmFjeSBjaGFuZ2VkLiBJIGV2YWx1YXRlZCB0aGUgbW9kZWwgdXNpbmcgYWNjdXJhY3kgc2NvcmVzIGFuZCBjb25mdXNpb24gbWF0cmljZXMsIHdoaWNoIGhlbHBlZCBhc3Nlc3MgaXRzIGFiaWxpdHkgdG8gY29ycmVjdGx5IGNsYXNzaWZ5IHRoZSBkYXRhIGFzIGVpdGhlciBCZW5pZ24gb3IgTWFsaWduYW50LiBCYXNlZCBvbiB0aGUgcmVzdWx0cywgSSBvYnNlcnZlZCB0aGF0IGEgY2VydGFpbiB2YWx1ZSBvZiBrIHByb3ZpZGVkIHRoZSBiZXN0IGJhbGFuY2UgYmV0d2VlbiBvdmVyZml0dGluZyBhbmQgdW5kZXJmaXR0aW5nLgpgYGAKCg==