Teoria

Random Forest es un algoritmo de aprendizaje automatico supervidaso que se usa para clasificar y/o hacer regresiones. Se basa en la creacion de multiples arboles de decision y combina sus resultados para hacer predicciones mas precisas y estables

Importar base de datos

#install.packages("randomForest") #Bosques Aleatorios
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
#install.packages("caret") #Entrenamiento de ML
library(caret)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
## 
##     margin
## Loading required package: lattice

Importar base de datos

df <- read.csv("C:\\Tec\\6to semestre\\Modulo 2\\House Prices.csv")

Entender la base de datos

summary(df)
##        Id           MSSubClass       MSZoning            LotArea      
##  Min.   :   0.0   Min.   : 20.00   Length:2919        Min.   :  1300  
##  1st Qu.: 729.5   1st Qu.: 20.00   Class :character   1st Qu.:  7478  
##  Median :1459.0   Median : 50.00   Mode  :character   Median :  9453  
##  Mean   :1459.0   Mean   : 57.14                      Mean   : 10168  
##  3rd Qu.:2188.5   3rd Qu.: 70.00                      3rd Qu.: 11570  
##  Max.   :2918.0   Max.   :190.00                      Max.   :215245  
##                                                                       
##   LotConfig           BldgType          OverallCond      YearBuilt   
##  Length:2919        Length:2919        Min.   :1.000   Min.   :1872  
##  Class :character   Class :character   1st Qu.:5.000   1st Qu.:1954  
##  Mode  :character   Mode  :character   Median :5.000   Median :1973  
##                                        Mean   :5.565   Mean   :1971  
##                                        3rd Qu.:6.000   3rd Qu.:2001  
##                                        Max.   :9.000   Max.   :2010  
##                                                                      
##   YearRemodAdd  Exterior1st          BsmtFinSF2       TotalBsmtSF    
##  Min.   :1950   Length:2919        Min.   :   0.00   Min.   :   0.0  
##  1st Qu.:1965   Class :character   1st Qu.:   0.00   1st Qu.: 793.0  
##  Median :1993   Mode  :character   Median :   0.00   Median : 989.5  
##  Mean   :1984                      Mean   :  49.58   Mean   :1051.8  
##  3rd Qu.:2004                      3rd Qu.:   0.00   3rd Qu.:1302.0  
##  Max.   :2010                      Max.   :1526.00   Max.   :6110.0  
##                                    NA's   :1         NA's   :1       
##    SalePrice     
##  Min.   : 34900  
##  1st Qu.:129975  
##  Median :163000  
##  Mean   :180921  
##  3rd Qu.:214000  
##  Max.   :755000  
##  NA's   :1459
head(df)
##   Id MSSubClass MSZoning LotArea LotConfig BldgType OverallCond YearBuilt
## 1  0         60       RL    8450    Inside     1Fam           5      2003
## 2  1         20       RL    9600       FR2     1Fam           8      1976
## 3  2         60       RL   11250    Inside     1Fam           5      2001
## 4  3         70       RL    9550    Corner     1Fam           5      1915
## 5  4         60       RL   14260       FR2     1Fam           5      2000
## 6  5         50       RL   14115    Inside     1Fam           5      1993
##   YearRemodAdd Exterior1st BsmtFinSF2 TotalBsmtSF SalePrice
## 1         2003     VinylSd          0         856    208500
## 2         1976     MetalSd          0        1262    181500
## 3         2002     VinylSd          0         920    223500
## 4         1970     Wd Sdng          0         756    140000
## 5         2000     VinylSd          0        1145    250000
## 6         1995     VinylSd          0         796    143000
str(df)
## 'data.frame':    2919 obs. of  13 variables:
##  $ Id          : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ MSSubClass  : int  60 20 60 70 60 50 20 60 50 190 ...
##  $ MSZoning    : chr  "RL" "RL" "RL" "RL" ...
##  $ LotArea     : int  8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
##  $ LotConfig   : chr  "Inside" "FR2" "Inside" "Corner" ...
##  $ BldgType    : chr  "1Fam" "1Fam" "1Fam" "1Fam" ...
##  $ OverallCond : int  5 8 5 5 5 5 5 6 5 6 ...
##  $ YearBuilt   : int  2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
##  $ YearRemodAdd: int  2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
##  $ Exterior1st : chr  "VinylSd" "MetalSd" "VinylSd" "Wd Sdng" ...
##  $ BsmtFinSF2  : int  0 0 0 0 0 0 0 32 0 0 ...
##  $ TotalBsmtSF : int  856 1262 920 756 1145 796 1686 1107 952 991 ...
##  $ SalePrice   : int  208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
df$MSZoning <- as.factor(df$MSZoning)
df$LotConfig <- as.factor(df$LotConfig)
df$BldgType <- as.factor(df$BldgType)
df$Exterior1st <- as.factor(df$Exterior1st)
str(df)
## 'data.frame':    2919 obs. of  13 variables:
##  $ Id          : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ MSSubClass  : int  60 20 60 70 60 50 20 60 50 190 ...
##  $ MSZoning    : Factor w/ 6 levels "","C (all)","FV",..: 5 5 5 5 5 5 5 5 6 5 ...
##  $ LotArea     : int  8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
##  $ LotConfig   : Factor w/ 5 levels "Corner","CulDSac",..: 5 3 5 1 3 5 5 1 5 1 ...
##  $ BldgType    : Factor w/ 5 levels "1Fam","2fmCon",..: 1 1 1 1 1 1 1 1 1 2 ...
##  $ OverallCond : int  5 8 5 5 5 5 5 6 5 6 ...
##  $ YearBuilt   : int  2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
##  $ YearRemodAdd: int  2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
##  $ Exterior1st : Factor w/ 16 levels "","AsbShng","AsphShn",..: 14 10 14 15 14 14 14 8 5 10 ...
##  $ BsmtFinSF2  : int  0 0 0 0 0 0 0 32 0 0 ...
##  $ TotalBsmtSF : int  856 1262 920 756 1145 796 1686 1107 952 991 ...
##  $ SalePrice   : int  208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
df <- na.omit(df)

Entender el modelo

set.seed(123)
renglones_entrenamiento <- createDataPartition(df$SalePrice, p = 0.7, list = FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]
modelo <- randomForest(SalePrice ~ ., data=entrenamiento, ntree=100)
print(modelo)
## 
## Call:
##  randomForest(formula = SalePrice ~ ., data = entrenamiento, ntree = 100) 
##                Type of random forest: regression
##                      Number of trees: 100
## No. of variables tried at each split: 4
## 
##           Mean of squared residuals: 1651910865
##                     % Var explained: 74.24

Evaluar el entrenamiento

evaluacion_entrenamiento <- predict(modelo, entrenamiento)
evaluacion_prueba <-  predict(modelo, prueba)
#matriz_confusion_entrenamiento <- confusionMatrix(evaluacion_entrenamiento, entrenamiento$SalePrice)
#matriz_confusion_prueba <- confusionMatrix(evaluacion_prueba, prueba$SalePrice)

Generar predicciones

prediccion <- predict(modelo, prueba)
LS0tDQp0aXRsZTogIkNsYXNlIDYiDQphdXRob3I6ICJEYW5pZWwgWsOhcmF0ZSAtICBBMDEyODU1NjEiDQpkYXRlOiAiMjAyNS0wMi0yNCINCm91dHB1dDogIA0KICAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGpvdXJuYWwNCi0tLQ0KDQohW10oQzpcXFRlY1xcNnRvIHNlbWVzdHJlXFxNb2R1bG8gMlxcY2FzYXR1Ym9zLmpwZykNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGdyZWVuOyI+VGVvcmlhPC9zcGFuPg0KDQoqKlJhbmRvbSBGb3Jlc3QqKiBlcyB1biBhbGdvcml0bW8gZGUgYXByZW5kaXphamUgYXV0b21hdGljbyBzdXBlcnZpZGFzbyBxdWUgc2UgdXNhIHBhcmEgY2xhc2lmaWNhciB5L28gaGFjZXIgcmVncmVzaW9uZXMuIFNlIGJhc2EgZW4gbGEgY3JlYWNpb24gZGUgbXVsdGlwbGVzIGFyYm9sZXMgZGUgZGVjaXNpb24geSBjb21iaW5hIHN1cyByZXN1bHRhZG9zIHBhcmEgaGFjZXIgcHJlZGljY2lvbmVzIG1hcyBwcmVjaXNhcyB5IGVzdGFibGVzDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBncmVlbjsiPkltcG9ydGFyIGJhc2UgZGUgZGF0b3M8L3NwYW4+DQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJyYW5kb21Gb3Jlc3QiKSAjQm9zcXVlcyBBbGVhdG9yaW9zDQpsaWJyYXJ5KHJhbmRvbUZvcmVzdCkNCiNpbnN0YWxsLnBhY2thZ2VzKCJjYXJldCIpICNFbnRyZW5hbWllbnRvIGRlIE1MDQpsaWJyYXJ5KGNhcmV0KQ0KYGBgDQoNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGdyZWVuOyI+SW1wb3J0YXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0KZGYgPC0gcmVhZC5jc3YoIkM6XFxUZWNcXDZ0byBzZW1lc3RyZVxcTW9kdWxvIDJcXEhvdXNlIFByaWNlcy5jc3YiKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBncmVlbjsiPkVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoZGYpDQpoZWFkKGRmKQ0Kc3RyKGRmKQ0KZGYkTVNab25pbmcgPC0gYXMuZmFjdG9yKGRmJE1TWm9uaW5nKQ0KZGYkTG90Q29uZmlnIDwtIGFzLmZhY3RvcihkZiRMb3RDb25maWcpDQpkZiRCbGRnVHlwZSA8LSBhcy5mYWN0b3IoZGYkQmxkZ1R5cGUpDQpkZiRFeHRlcmlvcjFzdCA8LSBhcy5mYWN0b3IoZGYkRXh0ZXJpb3Ixc3QpDQpzdHIoZGYpDQpkZiA8LSBuYS5vbWl0KGRmKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBncmVlbjsiPkVudGVuZGVyIGVsIG1vZGVsbzwvc3Bhbj4NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8gPC0gY3JlYXRlRGF0YVBhcnRpdGlvbihkZiRTYWxlUHJpY2UsIHAgPSAwLjcsIGxpc3QgPSBGQUxTRSkNCmVudHJlbmFtaWVudG8gPC0gZGZbcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sIF0NCnBydWViYSA8LSBkZlstcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sIF0NCm1vZGVsbyA8LSByYW5kb21Gb3Jlc3QoU2FsZVByaWNlIH4gLiwgZGF0YT1lbnRyZW5hbWllbnRvLCBudHJlZT0xMDApDQpwcmludChtb2RlbG8pDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGdyZWVuOyI+RXZhbHVhciBlbCBlbnRyZW5hbWllbnRvPC9zcGFuPg0KYGBge3J9DQpldmFsdWFjaW9uX2VudHJlbmFtaWVudG8gPC0gcHJlZGljdChtb2RlbG8sIGVudHJlbmFtaWVudG8pDQpldmFsdWFjaW9uX3BydWViYSA8LSAgcHJlZGljdChtb2RlbG8sIHBydWViYSkNCiNtYXRyaXpfY29uZnVzaW9uX2VudHJlbmFtaWVudG8gPC0gY29uZnVzaW9uTWF0cml4KGV2YWx1YWNpb25fZW50cmVuYW1pZW50bywgZW50cmVuYW1pZW50byRTYWxlUHJpY2UpDQojbWF0cml6X2NvbmZ1c2lvbl9wcnVlYmEgPC0gY29uZnVzaW9uTWF0cml4KGV2YWx1YWNpb25fcHJ1ZWJhLCBwcnVlYmEkU2FsZVByaWNlKQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBncmVlbjsiPkdlbmVyYXIgcHJlZGljY2lvbmVzPC9zcGFuPg0KYGBge3J9DQpwcmVkaWNjaW9uIDwtIHByZWRpY3QobW9kZWxvLCBwcnVlYmEpDQoNCmBgYA0KDQo=