Ejemplo vinos

Contexto

Estos datos son el resultado de un anĂĄlisis quĂ­mico de vinos cultivados en la misma regiĂłn de Italia pero derivados de tres cultivadores difeentes.

El anĂĄlisis determinĂł las cantidades de 13 componentes que se encuentran en cada uno de los tres cultivadores.

Instalar paquetes y llamar librerĂ­as

#install.packages("cluster") # Para agrupamientos
library(cluster)
#install.packages("ggplot2") # Hacer GrĂĄficas
library(ggplot2)
#install.packages("factoextra") # VisualizaciĂłn Clusters
library(factoextra)
#install.packages("data.table") # Conjunto de datos grande
library(data.table)
library(tidyverse)

Importar la base de datos

datos <- read.csv("/Users/anapaualvear/Downloads/wine_dataset.csv")

Entender la base de datos

summary(datos)
##     alcohol        malic_acid         ash        alcalinity_of_ash
##  Min.   :11.03   Min.   :0.740   Min.   :1.360   Min.   :10.60    
##  1st Qu.:12.36   1st Qu.:1.603   1st Qu.:2.210   1st Qu.:17.20    
##  Median :13.05   Median :1.865   Median :2.360   Median :19.50    
##  Mean   :13.00   Mean   :2.336   Mean   :2.367   Mean   :19.49    
##  3rd Qu.:13.68   3rd Qu.:3.083   3rd Qu.:2.558   3rd Qu.:21.50    
##  Max.   :14.83   Max.   :5.800   Max.   :3.230   Max.   :30.00    
##    magnesium      total_phenols     flavanoids    nonflavanoid_phenols
##  Min.   : 70.00   Min.   :0.980   Min.   :0.340   Min.   :0.1300      
##  1st Qu.: 88.00   1st Qu.:1.742   1st Qu.:1.205   1st Qu.:0.2700      
##  Median : 98.00   Median :2.355   Median :2.135   Median :0.3400      
##  Mean   : 99.74   Mean   :2.295   Mean   :2.029   Mean   :0.3619      
##  3rd Qu.:107.00   3rd Qu.:2.800   3rd Qu.:2.875   3rd Qu.:0.4375      
##  Max.   :162.00   Max.   :3.880   Max.   :5.080   Max.   :0.6600      
##  proanthocyanins color_intensity       hue         od280.od315_of_diluted_wines
##  Min.   :0.410   Min.   : 1.280   Min.   :0.4800   Min.   :1.270               
##  1st Qu.:1.250   1st Qu.: 3.220   1st Qu.:0.7825   1st Qu.:1.938               
##  Median :1.555   Median : 4.690   Median :0.9650   Median :2.780               
##  Mean   :1.591   Mean   : 5.058   Mean   :0.9574   Mean   :2.612               
##  3rd Qu.:1.950   3rd Qu.: 6.200   3rd Qu.:1.1200   3rd Qu.:3.170               
##  Max.   :3.580   Max.   :13.000   Max.   :1.7100   Max.   :4.000               
##     proline           target      
##  Min.   : 278.0   Min.   :0.0000  
##  1st Qu.: 500.5   1st Qu.:0.0000  
##  Median : 673.5   Median :1.0000  
##  Mean   : 746.9   Mean   :0.9382  
##  3rd Qu.: 985.0   3rd Qu.:2.0000  
##  Max.   :1680.0   Max.   :2.0000

Escalar la base de datos

datos_escalados <- datos
datos_escalados <- subset(datos_escalados, select= -target)
datos_escalados <- scale(datos_escalados) 

Generar los segmentos

grupos <- 3 #Inicio con cualquier valor, luego verifico
segmentos <- kmeans(datos_escalados,grupos) 

Asignar grupos a los datos

asignacion <- cbind(datos, cluster = segmentos$cluster)

Graficar los clusters

fviz_cluster(segmentos, data=datos)

Optimizar la cantidad de grupos

# La cantidad Ăłptima de grupos corresponde al punto mĂĄs alto de la grĂĄfica
set.seed(123)
optimizacion <- clusGap(datos_escalados, FUN=kmeans, nstart=1, K.max=10)
plot(optimizacion,xlab="NĂșmero de clusters k")

Comparar segmentos

promedio <- aggregate(asignacion, by=list(asignacion$cluster), FUN=mean)
promedio
##   Group.1  alcohol malic_acid      ash alcalinity_of_ash magnesium
## 1       1 12.25092   1.897385 2.231231          20.06308  92.73846
## 2       2 13.13412   3.307255 2.417647          21.24118  98.66667
## 3       3 13.67677   1.997903 2.466290          17.46290 107.96774
##   total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity
## 1      2.247692  2.0500000            0.3576923        1.624154        2.973077
## 2      1.683922  0.8188235            0.4519608        1.145882        7.234706
## 3      2.847581  3.0032258            0.2920968        1.922097        5.453548
##         hue od280.od315_of_diluted_wines   proline    target cluster
## 1 1.0627077                     2.803385  510.1692 1.0000000       1
## 2 0.6919608                     1.696667  619.0588 1.9411765       2
## 3 1.0654839                     3.163387 1100.2258 0.0483871       3
table(asignacion$cluster)
## 
##  1  2  3 
## 65 51 62

Ejercicio México 2024

Instalar paquetes y llamar librerĂ­as

#install.packages("sf") #Analisis de datos espaciales
library(sf)
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
#install.packages("rnaturalearth") #Proporciona lĂ­mites geogrĂĄficos
library(rnaturalearth)
#install.packages("rnaturalearthdata") #Datos de geografĂ­a 
library(rnaturalearthdata)
## 
## Attaching package: 'rnaturalearthdata'
## The following object is masked from 'package:rnaturalearth':
## 
##     countries110
#install.packages("devtools") 
library(devtools) #Instalar paquetes de fuentes externas
## Loading required package: usethis
devtools::install_github("ropensci/rnaturalearthhires") #Mapa de México particular
## Skipping install of 'rnaturalearthhires' from a github remote, the SHA1 (f03768ab) has not changed since last install.
##   Use `force = TRUE` to force installation
library(dplyr)

Cargar base de datos

datosmex <- read.csv("/Users/anapaualvear/Downloads/mexico2024.csv")

Cambiar nombre columna “Estado” a “Name”

datosmex <- datosmex %>%
  rename(name = Estado)

Entender la base de datos

summary(datosmex)
##      name             PoblaciĂłn      PIB.per.cĂĄpita   Esperanza.de.vida
##  Length:32          Min.   : 0.700   Min.   : 44387   Min.   :73.50    
##  Class :character   1st Qu.: 1.875   1st Qu.: 84672   1st Qu.:74.50    
##  Mode  :character   Median : 3.050   Median :118146   Median :75.00    
##                     Mean   : 3.947   Mean   :133393   Mean   :75.00    
##                     3rd Qu.: 4.975   3rd Qu.:151772   3rd Qu.:75.53    
##                     Max.   :17.400   Max.   :481697   Max.   :76.50    
##  Tasa.de.pobreza Tasa.de.alfabetizaciĂłn
##  Min.   :13.30   Min.   :86.50         
##  1st Qu.:28.20   1st Qu.:94.42         
##  Median :35.25   Median :96.50         
##  Mean   :37.54   Mean   :95.61         
##  3rd Qu.:46.20   3rd Qu.:97.85         
##  Max.   :67.40   Max.   :99.00

Obtener Mapa de México

mexico <- ne_states(country= "Mexico", returnclass="sf")

Escalar datos

escalados_mex <- datosmex %>%
  select(-name) %>%  # Excluir la columna de nombres
  scale()

Generar los segmentos

grupos_mex <- 3 #Inicio con cualquier valor, luego verifico
segmentos_mex <- kmeans(escalados_mex,grupos) 

Asignar grupos a los datos

asignacion_mex <- cbind(datosmex, cluster = segmentos_mex$cluster)

Graficar los clusters

fviz_cluster(segmentos_mex, data=escalados_mex)

Unir mapa con datos

mexico_clusters <- left_join(mexico, asignacion_mex, by = "name")
ggplot(mexico_clusters) +
  geom_sf(aes(fill = as.factor(cluster), color = "black")) +
  scale_fill_manual(values = c ("green","yellow","red")) +
  labs(title = "Clusters de Poblacion por Estado de Mexico") +
  theme_minimal()

LS0tCnRpdGxlOiAiQ2x1c3RlcnMiCmF1dGhvcjogIkFuYSBQYXVsYSBBbHZlYXIgQ2FudMO6IgpkYXRlOiAiMjAyNS0wMi0xOSIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6ICJzcGFjZWxhYiIKICAgIGhpZ2hsaWdodDogImthdGUiCi0tLQoKIVtdKC9Vc2Vycy9hbmFwYXVhbHZlYXIvRGVza3RvcC9tb2R1bG8gMiBSLzJfaW1nX2NkXzQ0XzBfNDgweDQ4MC53ZWJwKQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6bWFnZW50YTsiPkVqZW1wbG8gdmlub3M8L3NwYW4+CgojIyA8c3BhbiBzdHlsZT0iY29sb3I6bWFnZW50YTsiPkNvbnRleHRvPC9zcGFuPgpFc3RvcyBkYXRvcyBzb24gZWwgcmVzdWx0YWRvIGRlIHVuIGFuw6FsaXNpcyBxdcOtbWljbyBkZSB2aW5vcyBjdWx0aXZhZG9zIGVuIGxhIG1pc21hIHJlZ2nDs24gZGUgSXRhbGlhIHBlcm8gZGVyaXZhZG9zIGRlIHRyZXMgY3VsdGl2YWRvcmVzIGRpZmVlbnRlcy4gICAKCkVsIGFuw6FsaXNpcyBkZXRlcm1pbsOzIGxhcyBjYW50aWRhZGVzIGRlIDEzIGNvbXBvbmVudGVzIHF1ZSBzZSBlbmN1ZW50cmFuIGVuIGNhZGEgdW5vIGRlIGxvcyB0cmVzIGN1bHRpdmFkb3Jlcy4gIAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOm1hZ2VudGE7Ij5JbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzPC9zcGFuPiAgCgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojaW5zdGFsbC5wYWNrYWdlcygiY2x1c3RlciIpICMgUGFyYSBhZ3J1cGFtaWVudG9zCmxpYnJhcnkoY2x1c3RlcikKI2luc3RhbGwucGFja2FnZXMoImdncGxvdDIiKSAjIEhhY2VyIEdyw6FmaWNhcwpsaWJyYXJ5KGdncGxvdDIpCiNpbnN0YWxsLnBhY2thZ2VzKCJmYWN0b2V4dHJhIikgIyBWaXN1YWxpemFjacOzbiBDbHVzdGVycwpsaWJyYXJ5KGZhY3RvZXh0cmEpCiNpbnN0YWxsLnBhY2thZ2VzKCJkYXRhLnRhYmxlIikgIyBDb25qdW50byBkZSBkYXRvcyBncmFuZGUKbGlicmFyeShkYXRhLnRhYmxlKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6bWFnZW50YTsiPkltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+ICAKYGBge3J9CmRhdG9zIDwtIHJlYWQuY3N2KCIvVXNlcnMvYW5hcGF1YWx2ZWFyL0Rvd25sb2Fkcy93aW5lX2RhdGFzZXQuY3N2IikKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6bWFnZW50YTsiPkVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+ICAKYGBge3J9CnN1bW1hcnkoZGF0b3MpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOm1hZ2VudGE7Ij5Fc2NhbGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+ICAKYGBge3J9CmRhdG9zX2VzY2FsYWRvcyA8LSBkYXRvcwpkYXRvc19lc2NhbGFkb3MgPC0gc3Vic2V0KGRhdG9zX2VzY2FsYWRvcywgc2VsZWN0PSAtdGFyZ2V0KQpkYXRvc19lc2NhbGFkb3MgPC0gc2NhbGUoZGF0b3NfZXNjYWxhZG9zKSAKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6bWFnZW50YTsiPkdlbmVyYXIgbG9zIHNlZ21lbnRvczwvc3Bhbj4gIApgYGB7cn0KZ3J1cG9zIDwtIDMgI0luaWNpbyBjb24gY3VhbHF1aWVyIHZhbG9yLCBsdWVnbyB2ZXJpZmljbwpzZWdtZW50b3MgPC0ga21lYW5zKGRhdG9zX2VzY2FsYWRvcyxncnVwb3MpIApgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjptYWdlbnRhOyI+QXNpZ25hciBncnVwb3MgYSBsb3MgZGF0b3M8L3NwYW4+ICAKYGBge3J9CmFzaWduYWNpb24gPC0gY2JpbmQoZGF0b3MsIGNsdXN0ZXIgPSBzZWdtZW50b3MkY2x1c3RlcikKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6bWFnZW50YTsiPkdyYWZpY2FyIGxvcyBjbHVzdGVyczwvc3Bhbj4gIApgYGB7cn0KZnZpel9jbHVzdGVyKHNlZ21lbnRvcywgZGF0YT1kYXRvcykKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6bWFnZW50YTsiPk9wdGltaXphciBsYSBjYW50aWRhZCBkZSBncnVwb3M8L3NwYW4+ICAKYGBge3J9CiMgTGEgY2FudGlkYWQgw7NwdGltYSBkZSBncnVwb3MgY29ycmVzcG9uZGUgYWwgcHVudG8gbcOhcyBhbHRvIGRlIGxhIGdyw6FmaWNhCnNldC5zZWVkKDEyMykKb3B0aW1pemFjaW9uIDwtIGNsdXNHYXAoZGF0b3NfZXNjYWxhZG9zLCBGVU49a21lYW5zLCBuc3RhcnQ9MSwgSy5tYXg9MTApCnBsb3Qob3B0aW1pemFjaW9uLHhsYWI9Ik7Dum1lcm8gZGUgY2x1c3RlcnMgayIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOm1hZ2VudGE7Ij5Db21wYXJhciBzZWdtZW50b3M8L3NwYW4+ICAKYGBge3J9CnByb21lZGlvIDwtIGFnZ3JlZ2F0ZShhc2lnbmFjaW9uLCBieT1saXN0KGFzaWduYWNpb24kY2x1c3RlciksIEZVTj1tZWFuKQpwcm9tZWRpbwp0YWJsZShhc2lnbmFjaW9uJGNsdXN0ZXIpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Z3JlZW47Ij5FamVyY2ljaW8gTcOpeGljbyAyMDI0PC9zcGFuPiAgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Z3JlZW47Ij5JbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzPC9zcGFuPiAgCmBgYHtyfQojaW5zdGFsbC5wYWNrYWdlcygic2YiKSAjQW5hbGlzaXMgZGUgZGF0b3MgZXNwYWNpYWxlcwpsaWJyYXJ5KHNmKQojaW5zdGFsbC5wYWNrYWdlcygicm5hdHVyYWxlYXJ0aCIpICNQcm9wb3JjaW9uYSBsw61taXRlcyBnZW9ncsOhZmljb3MKbGlicmFyeShybmF0dXJhbGVhcnRoKQojaW5zdGFsbC5wYWNrYWdlcygicm5hdHVyYWxlYXJ0aGRhdGEiKSAjRGF0b3MgZGUgZ2VvZ3JhZsOtYSAKbGlicmFyeShybmF0dXJhbGVhcnRoZGF0YSkKI2luc3RhbGwucGFja2FnZXMoImRldnRvb2xzIikgCmxpYnJhcnkoZGV2dG9vbHMpICNJbnN0YWxhciBwYXF1ZXRlcyBkZSBmdWVudGVzIGV4dGVybmFzCmRldnRvb2xzOjppbnN0YWxsX2dpdGh1Yigicm9wZW5zY2kvcm5hdHVyYWxlYXJ0aGhpcmVzIikgI01hcGEgZGUgTcOpeGljbyBwYXJ0aWN1bGFyCmxpYnJhcnkoZHBseXIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmdyZWVuOyI+Q2FyZ2FyIGJhc2UgZGUgZGF0b3M8L3NwYW4+ICAKYGBge3J9CmRhdG9zbWV4IDwtIHJlYWQuY3N2KCIvVXNlcnMvYW5hcGF1YWx2ZWFyL0Rvd25sb2Fkcy9tZXhpY28yMDI0LmNzdiIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmdyZWVuOyI+Q2FtYmlhciBub21icmUgY29sdW1uYSAiRXN0YWRvIiBhICJOYW1lIjwvc3Bhbj4gIApgYGB7cn0KZGF0b3NtZXggPC0gZGF0b3NtZXggJT4lCiAgcmVuYW1lKG5hbWUgPSBFc3RhZG8pCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmdyZWVuOyI+RW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4gIApgYGB7cn0Kc3VtbWFyeShkYXRvc21leCkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Z3JlZW47Ij5PYnRlbmVyIE1hcGEgZGUgTcOpeGljbzwvc3Bhbj4KYGBge3J9Cm1leGljbyA8LSBuZV9zdGF0ZXMoY291bnRyeT0gIk1leGljbyIsIHJldHVybmNsYXNzPSJzZiIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmdyZWVuOyI+RXNjYWxhciBkYXRvczwvc3Bhbj4KYGBge3J9CmVzY2FsYWRvc19tZXggPC0gZGF0b3NtZXggJT4lCiAgc2VsZWN0KC1uYW1lKSAlPiUgICMgRXhjbHVpciBsYSBjb2x1bW5hIGRlIG5vbWJyZXMKICBzY2FsZSgpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmdyZWVuOyI+R2VuZXJhciBsb3Mgc2VnbWVudG9zPC9zcGFuPgpgYGB7cn0KZ3J1cG9zX21leCA8LSAzICNJbmljaW8gY29uIGN1YWxxdWllciB2YWxvciwgbHVlZ28gdmVyaWZpY28Kc2VnbWVudG9zX21leCA8LSBrbWVhbnMoZXNjYWxhZG9zX21leCxncnVwb3MpIApgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpncmVlbjsiPkFzaWduYXIgZ3J1cG9zIGEgbG9zIGRhdG9zPC9zcGFuPiAKYGBge3J9CmFzaWduYWNpb25fbWV4IDwtIGNiaW5kKGRhdG9zbWV4LCBjbHVzdGVyID0gc2VnbWVudG9zX21leCRjbHVzdGVyKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpncmVlbjsiPkdyYWZpY2FyIGxvcyBjbHVzdGVyczwvc3Bhbj4gIApgYGB7cn0KZnZpel9jbHVzdGVyKHNlZ21lbnRvc19tZXgsIGRhdGE9ZXNjYWxhZG9zX21leCkKYGBgCgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmdyZWVuOyI+VW5pciBtYXBhIGNvbiBkYXRvczwvc3Bhbj4KYGBge3J9Cm1leGljb19jbHVzdGVycyA8LSBsZWZ0X2pvaW4obWV4aWNvLCBhc2lnbmFjaW9uX21leCwgYnkgPSAibmFtZSIpCmdncGxvdChtZXhpY29fY2x1c3RlcnMpICsKICBnZW9tX3NmKGFlcyhmaWxsID0gYXMuZmFjdG9yKGNsdXN0ZXIpLCBjb2xvciA9ICJibGFjayIpKSArCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYyAoImdyZWVuIiwieWVsbG93IiwicmVkIikpICsKICBsYWJzKHRpdGxlID0gIkNsdXN0ZXJzIGRlIFBvYmxhY2lvbiBwb3IgRXN0YWRvIGRlIE1leGljbyIpICsKICB0aGVtZV9taW5pbWFsKCkKYGBgCgo=