La base de datos USArrests contiene estadísticas en arrestos por cada 100,000 residentes por agresión, asesinato y violación en cada uno de los 50 estados de EE.UU en 1973.
library(cluster) #Agrupamiento
library(ggplot2) #Graficar
library(factoextra) #Visualizar Clusters
library(data.table) #Manejo de conjunto de datos grandes
library(readr)
library(tidyverse)
library(caret)
library(lattice)
library(kernlab)
library(rpart)
df<- USArrests
datosUSA <- subset(df, select = -UrbanPop)
summary(datosUSA)
## Murder Assault Rape
## Min. : 0.800 Min. : 45.0 Min. : 7.30
## 1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:15.07
## Median : 7.250 Median :159.0 Median :20.10
## Mean : 7.788 Mean :170.8 Mean :21.23
## 3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:26.18
## Max. :17.400 Max. :337.0 Max. :46.00
#df<-USArrests
#datosUSA <- scale(df)
grupos <- 3 #Se buscar el número óptimo de grupos o clusters
segmentos <- kmeans(datosUSA,grupos)
#asignacion <- cbind(datosUSA,cluster= segmentos$cluster)
asignacion <- data.frame(datosUSA, cluster = segmentos$cluster)
fviz_cluster(segmentos, data = datosUSA)
#La cantidad óptima de grupos corresponde al punto más alto de la gráfica
set.seed(123)
optimizacion <- clusGap(datosUSA, FUN=kmeans, nstart=1, K.max=10)
plot(optimizacion, xlab= "Número de clusters k")
#El k OPTIMO ES EL COEFICIENTE DE SILUETA MÁXIMO
fviz_nbclust(df, kmeans, method = "wss") + ggtitle("Método del codo")
#EL k optimo es el coeficiente de silueta del punto de inflexión
#promedio <- aggregate(asignacion, by=list(asignacion$cluster),FUN=mean)
#promedio
promedio <- aggregate(. ~ cluster, data = asignacion, FUN = mean)
print(promedio)
## cluster Murder Assault Rape
## 1 1 4.270000 87.5500 14.39000
## 2 2 8.214286 173.2857 22.84286
## 3 3 11.812500 272.5625 28.37500
#table(asignacion$cluster)
# Crear una columna con etiquetas descriptivas para los clusters
asignacion$nivel_inseguridad <- factor(asignacion$cluster,
levels = c(1, 2, 3),
labels = c("Bajo", "Medio", "Alto"))
# Agregar los nombres de los estados a la tabla final
asignacion$Estado <- rownames(USArrests)
# Eliminar los nombres de los estados y reiniciar el índice de fila
rownames(asignacion) <- NULL
# Reordenar columnas para una mejor presentación
ClasEst <- asignacion[, c("Estado", "Assault", "Murder", "Rape", "nivel_inseguridad")]
# Mostrar el dataframe final
print(ClasEst)
## Estado Assault Murder Rape nivel_inseguridad
## 1 Alabama 236 13.2 21.2 Alto
## 2 Alaska 263 10.0 44.5 Alto
## 3 Arizona 294 8.1 31.0 Alto
## 4 Arkansas 190 8.8 19.5 Medio
## 5 California 276 9.0 40.6 Alto
## 6 Colorado 204 7.9 38.7 Medio
## 7 Connecticut 110 3.3 11.1 Bajo
## 8 Delaware 238 5.9 15.8 Alto
## 9 Florida 335 15.4 31.9 Alto
## 10 Georgia 211 17.4 25.8 Medio
## 11 Hawaii 46 5.3 20.2 Bajo
## 12 Idaho 120 2.6 14.2 Bajo
## 13 Illinois 249 10.4 24.0 Alto
## 14 Indiana 113 7.2 21.0 Bajo
## 15 Iowa 56 2.2 11.3 Bajo
## 16 Kansas 115 6.0 18.0 Bajo
## 17 Kentucky 109 9.7 16.3 Bajo
## 18 Louisiana 249 15.4 22.2 Alto
## 19 Maine 83 2.1 7.8 Bajo
## 20 Maryland 300 11.3 27.8 Alto
## 21 Massachusetts 149 4.4 16.3 Medio
## 22 Michigan 255 12.1 35.1 Alto
## 23 Minnesota 72 2.7 14.9 Bajo
## 24 Mississippi 259 16.1 17.1 Alto
## 25 Missouri 178 9.0 28.2 Medio
## 26 Montana 109 6.0 16.4 Bajo
## 27 Nebraska 102 4.3 16.5 Bajo
## 28 Nevada 252 12.2 46.0 Alto
## 29 New Hampshire 57 2.1 9.5 Bajo
## 30 New Jersey 159 7.4 18.8 Medio
## 31 New Mexico 285 11.4 32.1 Alto
## 32 New York 254 11.1 26.1 Alto
## 33 North Carolina 337 13.0 16.1 Alto
## 34 North Dakota 45 0.8 7.3 Bajo
## 35 Ohio 120 7.3 21.4 Bajo
## 36 Oklahoma 151 6.6 20.0 Medio
## 37 Oregon 159 4.9 29.3 Medio
## 38 Pennsylvania 106 6.3 14.9 Bajo
## 39 Rhode Island 174 3.4 8.3 Medio
## 40 South Carolina 279 14.4 22.5 Alto
## 41 South Dakota 86 3.8 12.8 Bajo
## 42 Tennessee 188 13.2 26.9 Medio
## 43 Texas 201 12.7 25.5 Medio
## 44 Utah 120 3.2 22.9 Bajo
## 45 Vermont 48 2.2 11.2 Bajo
## 46 Virginia 156 8.5 20.7 Medio
## 47 Washington 145 4.0 26.2 Medio
## 48 West Virginia 81 5.7 9.3 Bajo
## 49 Wisconsin 53 2.6 10.8 Bajo
## 50 Wyoming 161 6.8 15.6 Medio
view(ClasEst)
ClasEst$nivel_inseguridad <- as.factor(ClasEst$nivel_inseguridad)
set.seed(321)
renglones_entrenamiento <- createDataPartition(ClasEst$nivel_inseguridad, p=0.8, list=FALSE)
entrenamiento <-ClasEst[renglones_entrenamiento, ]
prueba <- ClasEst[-renglones_entrenamiento, ]
modelo5 <- train(nivel_inseguridad ~ ., data = entrenamiento,
method = "nnet", #Cambiar por modelo
preProcess = c("scale", "center"),
trControl = trainControl(method = "cv", number=10),
trace = FALSE
)
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArkansas, EstadoFlorida,
## EstadoNebraska, EstadoPennsylvania, EstadoWyoming
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoArizona, EstadoIdaho,
## EstadoSouth Dakota, EstadoVirginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMichigan, EstadoMinnesota,
## EstadoOregon, EstadoWisconsin
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoLouisiana, EstadoMissouri,
## EstadoNew Hampshire, EstadoNorth Carolina
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoMaine, EstadoNew Jersey,
## EstadoSouth Carolina, EstadoWest Virginia
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoDelaware, EstadoIndiana,
## EstadoMaryland, EstadoMassachusetts
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoIllinois, EstadoKansas,
## EstadoTexas, EstadoUtah
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoGeorgia, EstadoNevada,
## EstadoNorth Dakota
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoHawaii, EstadoNew York,
## EstadoOhio, EstadoOklahoma
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: EstadoColorado, EstadoMississippi,
## EstadoTennessee, EstadoVermont