Titanic
Importar base de datos
library(readr)
Importar la base de datos
# file.choose()
titanic <- read_csv("titanic.csv")
## Rows: 1310 Columns: 14
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): name, sex, ticket, cabin, embarked, boat, home.dest
## dbl (7): pclass, survived, age, sibsp, parch, fare, body
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#View(titanic)
Entender la base de datos
summary(titanic)
## pclass survived name sex
## Min. :1.000 Min. :0.000 Length:1310 Length:1310
## 1st Qu.:2.000 1st Qu.:0.000 Class :character Class :character
## Median :3.000 Median :0.000 Mode :character Mode :character
## Mean :2.295 Mean :0.382
## 3rd Qu.:3.000 3rd Qu.:1.000
## Max. :3.000 Max. :1.000
## NA's :1 NA's :1
## age sibsp parch ticket
## Min. : 0.1667 Min. :0.0000 Min. :0.000 Length:1310
## 1st Qu.:21.0000 1st Qu.:0.0000 1st Qu.:0.000 Class :character
## Median :28.0000 Median :0.0000 Median :0.000 Mode :character
## Mean :29.8811 Mean :0.4989 Mean :0.385
## 3rd Qu.:39.0000 3rd Qu.:1.0000 3rd Qu.:0.000
## Max. :80.0000 Max. :8.0000 Max. :9.000
## NA's :264 NA's :1 NA's :1
## fare cabin embarked boat
## Min. : 0.000 Length:1310 Length:1310 Length:1310
## 1st Qu.: 7.896 Class :character Class :character Class :character
## Median : 14.454 Mode :character Mode :character Mode :character
## Mean : 33.295
## 3rd Qu.: 31.275
## Max. :512.329
## NA's :2
## body home.dest
## Min. : 1.0 Length:1310
## 1st Qu.: 72.0 Class :character
## Median :155.0 Mode :character
## Mean :160.8
## 3rd Qu.:256.0
## Max. :328.0
## NA's :1189
str(titanic)
## spc_tbl_ [1,310 × 14] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ pclass : num [1:1310] 1 1 1 1 1 1 1 1 1 1 ...
## $ survived : num [1:1310] 1 1 0 0 0 1 1 0 1 0 ...
## $ name : chr [1:1310] "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Allison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Creighton" ...
## $ sex : chr [1:1310] "female" "male" "female" "male" ...
## $ age : num [1:1310] 29 0.917 2 30 25 ...
## $ sibsp : num [1:1310] 0 1 1 1 1 0 1 0 2 0 ...
## $ parch : num [1:1310] 0 2 2 2 2 0 0 0 0 0 ...
## $ ticket : chr [1:1310] "24160" "113781" "113781" "113781" ...
## $ fare : num [1:1310] 211 152 152 152 152 ...
## $ cabin : chr [1:1310] "B5" "C22 C26" "C22 C26" "C22 C26" ...
## $ embarked : chr [1:1310] "S" "S" "S" "S" ...
## $ boat : chr [1:1310] "2" "11" NA NA ...
## $ body : num [1:1310] NA NA NA 135 NA NA NA NA NA 22 ...
## $ home.dest: chr [1:1310] "St Louis, MO" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" ...
## - attr(*, "spec")=
## .. cols(
## .. pclass = col_double(),
## .. survived = col_double(),
## .. name = col_character(),
## .. sex = col_character(),
## .. age = col_double(),
## .. sibsp = col_double(),
## .. parch = col_double(),
## .. ticket = col_character(),
## .. fare = col_double(),
## .. cabin = col_character(),
## .. embarked = col_character(),
## .. boat = col_character(),
## .. body = col_double(),
## .. home.dest = col_character()
## .. )
## - attr(*, "problems")=<externalptr>
Filtrar base de datos
Titanic <- titanic[,c("pclass","age","sex","survived")]
Titanic$survived <- as.factor(ifelse(Titanic$survived==0, "Murio", "Sobrevive"))
Titanic$pclass <- as.factor(Titanic$pclass)
Titanic$sex <- as.factor(Titanic$sex)
str(Titanic)
## tibble [1,310 × 4] (S3: tbl_df/tbl/data.frame)
## $ pclass : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ age : num [1:1310] 29 0.917 2 30 25 ...
## $ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2 1 2 1 2 ...
## $ survived: Factor w/ 2 levels "Murio","Sobrevive": 2 2 1 1 1 2 2 1 2 1 ...
sum(is.na(Titanic))
## [1] 267
sapply(Titanic, function(x) sum(is.na(x)))
## pclass age sex survived
## 1 264 1 1
Titanic <- na.omit(Titanic)
Crear arbol de decisión
# install.packages("rpart")
library(rpart)
arbol <- rpart(formula=survived ~ ., data = Titanic)
arbol
## n= 1046
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 1046 427 Murio (0.59177820 0.40822180)
## 2) sex=male 658 135 Murio (0.79483283 0.20516717)
## 4) age>=9.5 615 110 Murio (0.82113821 0.17886179) *
## 5) age< 9.5 43 18 Sobrevive (0.41860465 0.58139535)
## 10) pclass=3 29 11 Murio (0.62068966 0.37931034) *
## 11) pclass=1,2 14 0 Sobrevive (0.00000000 1.00000000) *
## 3) sex=female 388 96 Sobrevive (0.24742268 0.75257732)
## 6) pclass=3 152 72 Murio (0.52631579 0.47368421)
## 12) age>=1.5 145 66 Murio (0.54482759 0.45517241) *
## 13) age< 1.5 7 1 Sobrevive (0.14285714 0.85714286) *
## 7) pclass=1,2 236 16 Sobrevive (0.06779661 0.93220339) *
# install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(arbol)

prp(arbol,extra = 7,prefix = "fraccion")

Conclusiones
- Las más altas probabilidades de sobrevivir en el Titanic son niño
varón menor de 9.5 años de 1° y 2° clase (100%), y mujeres en 1° y 2°
clase (93%).
- Las más bajas probabilidades de sobrevivir en el Titanic son los
hombres mayores de 9.5 años (18%), y los hombres menores de 9.5 años en
3° clase (38%)
LS0tDQp0aXRsZTogIlRpdGFuaWMiDQphdXRob3I6ICJMaWxpdGhfQ3VldmFzX0EwMTQyMjc0OSINCmRhdGU6ICIyMDI1LTAyLTI3Ig0Kb3V0cHV0OiANCiBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUgDQogICAgdGhlbWU6IHNpbXBsZQ0KLS0tDQoNCiFbXShDOi9Vc2Vycy9hbGVqYS9QaWN0dXJlcy9JbWFnZW5lc190cmFiYWpvcy9UaXRhbmljLmdpZikNCg0KIyA8c3BhbiBzdHlsZT0gImNvbG9yOnJlZCA7Ij5UaXRhbmljPC9zcGFuPg0KDQojIyA8c3BhbiBzdHlsZT0gImNvbG9yOnJlZCA7Ij5JbXBvcnRhciBiYXNlIGRlIGRhdG9zPC9zcGFuPg0KYGBge3J9DQpsaWJyYXJ5KHJlYWRyKQ0KDQpgYGANCg0KDQojIyBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyfQ0KIyBmaWxlLmNob29zZSgpDQp0aXRhbmljIDwtIHJlYWRfY3N2KCJ0aXRhbmljLmNzdiIpDQojVmlldyh0aXRhbmljKQ0KYGBgDQoNCiMjIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MNCg0KYGBge3J9DQpzdW1tYXJ5KHRpdGFuaWMpDQpzdHIodGl0YW5pYykNCmBgYA0KDQojIyBGaWx0cmFyIGJhc2UgZGUgZGF0b3MNCg0KYGBge3J9DQpUaXRhbmljIDwtIHRpdGFuaWNbLGMoInBjbGFzcyIsImFnZSIsInNleCIsInN1cnZpdmVkIildDQpUaXRhbmljJHN1cnZpdmVkIDwtIGFzLmZhY3RvcihpZmVsc2UoVGl0YW5pYyRzdXJ2aXZlZD09MCwgIk11cmlvIiwgIlNvYnJldml2ZSIpKQ0KVGl0YW5pYyRwY2xhc3MgPC0gYXMuZmFjdG9yKFRpdGFuaWMkcGNsYXNzKQ0KVGl0YW5pYyRzZXggPC0gIGFzLmZhY3RvcihUaXRhbmljJHNleCkNCnN0cihUaXRhbmljKQ0KDQpzdW0oaXMubmEoVGl0YW5pYykpDQpzYXBwbHkoVGl0YW5pYywgZnVuY3Rpb24oeCkgc3VtKGlzLm5hKHgpKSkNCg0KVGl0YW5pYyA8LSBuYS5vbWl0KFRpdGFuaWMpDQoNCmBgYA0KDQojIyBDcmVhciBhcmJvbCBkZSBkZWNpc2nDs24NCg0KYGBge3J9DQojIGluc3RhbGwucGFja2FnZXMoInJwYXJ0IikNCmxpYnJhcnkocnBhcnQpDQphcmJvbCA8LSBycGFydChmb3JtdWxhPXN1cnZpdmVkIH4gLiwgZGF0YSA9IFRpdGFuaWMpDQphcmJvbA0KDQojIGluc3RhbGwucGFja2FnZXMoInJwYXJ0LnBsb3QiKQ0KbGlicmFyeShycGFydC5wbG90KQ0KcnBhcnQucGxvdChhcmJvbCkNCnBycChhcmJvbCxleHRyYSA9IDcscHJlZml4ID0gImZyYWNjaW9uIikNCmBgYA0KDQojIyBDb25jbHVzaW9uZXMNCg0KMS4gTGFzIG3DoXMgYWx0YXMgcHJvYmFiaWxpZGFkZXMgZGUgc29icmV2aXZpciBlbiBlbCBUaXRhbmljIHNvbiBuacOxbyB2YXLDs24gbWVub3IgZGUgOS41IGHDsW9zIGRlIDHCsCB5IDLCsCBjbGFzZSAoMTAwJSksIHkgbXVqZXJlcyBlbiAxwrAgeSAywrAgY2xhc2UgKDkzJSkuICANCjIuIExhcyBtw6FzIGJhamFzIHByb2JhYmlsaWRhZGVzIGRlIHNvYnJldml2aXIgZW4gZWwgVGl0YW5pYyBzb24gbG9zIGhvbWJyZXMgbWF5b3JlcyBkZSA5LjUgYcOxb3MgKDE4JSksIHkgbG9zIGhvbWJyZXMgbWVub3JlcyBkZSA5LjUgYcOxb3MgZW4gM8KwIGNsYXNlICgzOCUpDQo=