Una Red Neuronal Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolvienod un problema de aprendizaje.
## Cargando paquete requerido: ggplot2
## Cargando paquete requerido: lattice
## crim zn indus chas
## Min. :-0.419367 Min. :-0.48724 Min. :-1.5563 Min. :-0.2723
## 1st Qu.:-0.410563 1st Qu.:-0.48724 1st Qu.:-0.8668 1st Qu.:-0.2723
## Median :-0.390280 Median :-0.48724 Median :-0.2109 Median :-0.2723
## Mean : 0.000000 Mean : 0.00000 Mean : 0.0000 Mean : 0.0000
## 3rd Qu.: 0.007389 3rd Qu.: 0.04872 3rd Qu.: 1.0150 3rd Qu.:-0.2723
## Max. : 9.924110 Max. : 3.80047 Max. : 2.4202 Max. : 3.6648
## nox rm age dis
## Min. :-1.4644 Min. :-3.8764 Min. :-2.3331 Min. :-1.2658
## 1st Qu.:-0.9121 1st Qu.:-0.5681 1st Qu.:-0.8366 1st Qu.:-0.8049
## Median :-0.1441 Median :-0.1084 Median : 0.3171 Median :-0.2790
## Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
## 3rd Qu.: 0.5981 3rd Qu.: 0.4823 3rd Qu.: 0.9059 3rd Qu.: 0.6617
## Max. : 2.7296 Max. : 3.5515 Max. : 1.1164 Max. : 3.9566
## rad tax ptratio b
## Min. :-0.9819 Min. :-1.3127 Min. :-2.7047 Min. :-3.9033
## 1st Qu.:-0.6373 1st Qu.:-0.7668 1st Qu.:-0.4876 1st Qu.: 0.2049
## Median :-0.5225 Median :-0.4642 Median : 0.2746 Median : 0.3808
## Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
## 3rd Qu.: 1.6596 3rd Qu.: 1.5294 3rd Qu.: 0.8058 3rd Qu.: 0.4332
## Max. : 1.6596 Max. : 1.7964 Max. : 1.6372 Max. : 0.4406
## lstat medv
## Min. :-1.5296 Min. :-1.9063
## 1st Qu.:-0.7986 1st Qu.:-0.5989
## Median :-0.1811 Median :-0.1449
## Mean : 0.0000 Mean : 0.0000
## 3rd Qu.: 0.6024 3rd Qu.: 0.2683
## Max. : 3.5453 Max. : 2.9865
## crim zn indus chas nox rm
## [1,] -0.4193669 0.2845483 -1.2866362 -0.2723291 -0.1440749 0.4132629
## [2,] -0.4169267 -0.4872402 -0.5927944 -0.2723291 -0.7395304 0.1940824
## [3,] -0.4169290 -0.4872402 -0.5927944 -0.2723291 -0.7395304 1.2814456
## [4,] -0.4163384 -0.4872402 -1.3055857 -0.2723291 -0.8344581 1.0152978
## [5,] -0.4120741 -0.4872402 -1.3055857 -0.2723291 -0.8344581 1.2273620
## [6,] -0.4166314 -0.4872402 -1.3055857 -0.2723291 -0.8344581 0.2068916
## age dis rad tax ptratio b lstat
## [1,] -0.1198948 0.140075 -0.9818712 -0.6659492 -1.4575580 0.4406159 -1.0744990
## [2,] 0.3668034 0.556609 -0.8670245 -0.9863534 -0.3027945 0.4406159 -0.4919525
## [3,] -0.2655490 0.556609 -0.8670245 -0.9863534 -0.3027945 0.3960351 -1.2075324
## [4,] -0.8090878 1.076671 -0.7521778 -1.1050216 0.1129203 0.4157514 -1.3601708
## [5,] -0.5106743 1.076671 -0.7521778 -1.1050216 0.1129203 0.4406159 -1.0254866
## [6,] -0.3508100 1.076671 -0.7521778 -1.1050216 0.1129203 0.4101651 -1.0422909
## medv
## [1,] 0.1595278
## [2,] -0.1014239
## [3,] 1.3229375
## [4,] 1.1815886
## [5,] 1.4860323
## [6,] 0.6705582
## num [1:506, 1:14] -0.419 -0.417 -0.417 -0.416 -0.412 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:14] "crim" "zn" "indus" "chas" ...
## - attr(*, "scaled:center")= Named num [1:14] 3.6135 11.3636 11.1368 0.0692 0.5547 ...
## ..- attr(*, "names")= chr [1:14] "crim" "zn" "indus" "chas" ...
## - attr(*, "scaled:scale")= Named num [1:14] 8.602 23.322 6.86 0.254 0.116 ...
## ..- attr(*, "names")= chr [1:14] "crim" "zn" "indus" "chas" ...