Teoría

Una Red Neuronal Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolvienod un problema de aprendizaje.

Instalar paquetes y llamar librerías

#install.packages("neuralnet")
library(neuralnet)
library(caret)
## Cargando paquete requerido: ggplot2
## Cargando paquete requerido: lattice

Importar la base de datos

boston_borrador <- read.csv("C:\\Users\\Usuario\\Documents\\IAConcentración\\M2\\Redes Neuronales\\BostonHousing.csv")
boston <- scale(boston_borrador)

Entender la base de datos

summary(boston)
##       crim                 zn               indus              chas        
##  Min.   :-0.419367   Min.   :-0.48724   Min.   :-1.5563   Min.   :-0.2723  
##  1st Qu.:-0.410563   1st Qu.:-0.48724   1st Qu.:-0.8668   1st Qu.:-0.2723  
##  Median :-0.390280   Median :-0.48724   Median :-0.2109   Median :-0.2723  
##  Mean   : 0.000000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.007389   3rd Qu.: 0.04872   3rd Qu.: 1.0150   3rd Qu.:-0.2723  
##  Max.   : 9.924110   Max.   : 3.80047   Max.   : 2.4202   Max.   : 3.6648  
##       nox                rm               age               dis         
##  Min.   :-1.4644   Min.   :-3.8764   Min.   :-2.3331   Min.   :-1.2658  
##  1st Qu.:-0.9121   1st Qu.:-0.5681   1st Qu.:-0.8366   1st Qu.:-0.8049  
##  Median :-0.1441   Median :-0.1084   Median : 0.3171   Median :-0.2790  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.5981   3rd Qu.: 0.4823   3rd Qu.: 0.9059   3rd Qu.: 0.6617  
##  Max.   : 2.7296   Max.   : 3.5515   Max.   : 1.1164   Max.   : 3.9566  
##       rad               tax             ptratio              b          
##  Min.   :-0.9819   Min.   :-1.3127   Min.   :-2.7047   Min.   :-3.9033  
##  1st Qu.:-0.6373   1st Qu.:-0.7668   1st Qu.:-0.4876   1st Qu.: 0.2049  
##  Median :-0.5225   Median :-0.4642   Median : 0.2746   Median : 0.3808  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 1.6596   3rd Qu.: 1.5294   3rd Qu.: 0.8058   3rd Qu.: 0.4332  
##  Max.   : 1.6596   Max.   : 1.7964   Max.   : 1.6372   Max.   : 0.4406  
##      lstat              medv        
##  Min.   :-1.5296   Min.   :-1.9063  
##  1st Qu.:-0.7986   1st Qu.:-0.5989  
##  Median :-0.1811   Median :-0.1449  
##  Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.6024   3rd Qu.: 0.2683  
##  Max.   : 3.5453   Max.   : 2.9865
head(boston)
##            crim         zn      indus       chas        nox        rm
## [1,] -0.4193669  0.2845483 -1.2866362 -0.2723291 -0.1440749 0.4132629
## [2,] -0.4169267 -0.4872402 -0.5927944 -0.2723291 -0.7395304 0.1940824
## [3,] -0.4169290 -0.4872402 -0.5927944 -0.2723291 -0.7395304 1.2814456
## [4,] -0.4163384 -0.4872402 -1.3055857 -0.2723291 -0.8344581 1.0152978
## [5,] -0.4120741 -0.4872402 -1.3055857 -0.2723291 -0.8344581 1.2273620
## [6,] -0.4166314 -0.4872402 -1.3055857 -0.2723291 -0.8344581 0.2068916
##             age      dis        rad        tax    ptratio         b      lstat
## [1,] -0.1198948 0.140075 -0.9818712 -0.6659492 -1.4575580 0.4406159 -1.0744990
## [2,]  0.3668034 0.556609 -0.8670245 -0.9863534 -0.3027945 0.4406159 -0.4919525
## [3,] -0.2655490 0.556609 -0.8670245 -0.9863534 -0.3027945 0.3960351 -1.2075324
## [4,] -0.8090878 1.076671 -0.7521778 -1.1050216  0.1129203 0.4157514 -1.3601708
## [5,] -0.5106743 1.076671 -0.7521778 -1.1050216  0.1129203 0.4406159 -1.0254866
## [6,] -0.3508100 1.076671 -0.7521778 -1.1050216  0.1129203 0.4101651 -1.0422909
##            medv
## [1,]  0.1595278
## [2,] -0.1014239
## [3,]  1.3229375
## [4,]  1.1815886
## [5,]  1.4860323
## [6,]  0.6705582
str(boston)
##  num [1:506, 1:14] -0.419 -0.417 -0.417 -0.416 -0.412 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:14] "crim" "zn" "indus" "chas" ...
##  - attr(*, "scaled:center")= Named num [1:14] 3.6135 11.3636 11.1368 0.0692 0.5547 ...
##   ..- attr(*, "names")= chr [1:14] "crim" "zn" "indus" "chas" ...
##  - attr(*, "scaled:scale")= Named num [1:14] 8.602 23.322 6.86 0.254 0.116 ...
##   ..- attr(*, "names")= chr [1:14] "crim" "zn" "indus" "chas" ...

Partir la base de datos

set.seed(123)
renglones_entrenamiento_boston <- createDataPartition(boston_borrador$medv, p=.8, list = FALSE)
entrenamiento_boston <- boston[renglones_entrenamiento_boston, ]
prueba_boston <- boston[-renglones_entrenamiento_boston, ]

Generar el modelo

#modelo_boston <- neuralnet(medv ~ ., data=entrenamiento_boston)

Predecir con la red neuronal

#prediccion <- compute(modelo_boston, prueba_boston)
#prediccion <- net.result
#prediccion
LS0tDQp0aXRsZTogIlJlZGVzIE5ldXJvbmFsZXMiDQphdXRob3I6ICJJa2VyIFZpbGxhZmHDsWEgLSBBMDA1NzM3NTYiDQpkYXRlOiAiMjAyNS0wMi0yNiINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRoZW1lOiBkYXJrbHkNCiAgICBoaWdobGlnaHQ6IGhhZGRvY2sNCi0tLQ0KDQohW10oQzpcXFVzZXJzXFxVc3VhcmlvXFxEb2N1bWVudHNcXElBQ29uY2VudHJhY2nDs25cXE0yXFxSZWRlcyBOZXVyb25hbGVzXFxib3N0b24uanBlZykNCg0KDQojIFtUZW9yw61hXXtzdHlsZT0iY29sb3I6IHJlZDsifQ0KVW5hICoqUmVkIE5ldXJvbmFsIEFydGlmaWNpYWwgKEFOTikqKiBtb2RlbGEgbGEgcmVsYWNpw7NuIGVudHJlIHVuIGNvbmp1bnRvIGRlIGVudHJhZGFzIHkgdW5hIHNhbGlkYSwgcmVzb2x2aWVub2QgdW4gcHJvYmxlbWEgZGUgYXByZW5kaXphamUuDQoNCg0KIyBbSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hc117c3R5bGU9ImNvbG9yOiByZWQ7In0NCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoIm5ldXJhbG5ldCIpDQpsaWJyYXJ5KG5ldXJhbG5ldCkNCmxpYnJhcnkoY2FyZXQpDQpgYGANCg0KDQojIFtJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zXXtzdHlsZT0iY29sb3I6IHJlZDsifQ0KYGBge3J9DQpib3N0b25fYm9ycmFkb3IgPC0gcmVhZC5jc3YoIkM6XFxVc2Vyc1xcVXN1YXJpb1xcRG9jdW1lbnRzXFxJQUNvbmNlbnRyYWNpw7NuXFxNMlxcUmVkZXMgTmV1cm9uYWxlc1xcQm9zdG9uSG91c2luZy5jc3YiKQ0KYm9zdG9uIDwtIHNjYWxlKGJvc3Rvbl9ib3JyYWRvcikNCg0KYGBgDQoNCg0KIyBbRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvc117c3R5bGU9ImNvbG9yOiByZWQ7In0NCmBgYHtyfQ0Kc3VtbWFyeShib3N0b24pDQpoZWFkKGJvc3RvbikNCnN0cihib3N0b24pDQpgYGANCg0KDQojIFtQYXJ0aXIgbGEgYmFzZSBkZSBkYXRvc117c3R5bGU9ImNvbG9yOiByZWQ7In0NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KcmVuZ2xvbmVzX2VudHJlbmFtaWVudG9fYm9zdG9uIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oYm9zdG9uX2JvcnJhZG9yJG1lZHYsIHA9LjgsIGxpc3QgPSBGQUxTRSkNCmVudHJlbmFtaWVudG9fYm9zdG9uIDwtIGJvc3RvbltyZW5nbG9uZXNfZW50cmVuYW1pZW50b19ib3N0b24sIF0NCnBydWViYV9ib3N0b24gPC0gYm9zdG9uWy1yZW5nbG9uZXNfZW50cmVuYW1pZW50b19ib3N0b24sIF0NCmBgYA0KDQoNCiMgW0dlbmVyYXIgZWwgbW9kZWxvXXtzdHlsZT0iY29sb3I6IHJlZDsifQ0KYGBge3J9DQojbW9kZWxvX2Jvc3RvbiA8LSBuZXVyYWxuZXQobWVkdiB+IC4sIGRhdGE9ZW50cmVuYW1pZW50b19ib3N0b24pDQpgYGANCg0KDQojIFtQcmVkZWNpciBjb24gbGEgcmVkIG5ldXJvbmFsXXtzdHlsZT0iY29sb3I6IHJlZDsifQ0KYGBge3J9DQojcHJlZGljY2lvbiA8LSBjb21wdXRlKG1vZGVsb19ib3N0b24sIHBydWViYV9ib3N0b24pDQojcHJlZGljY2lvbiA8LSBuZXQucmVzdWx0DQojcHJlZGljY2lvbg0KYGBgDQoNCg0KDQoNCg0KDQo=