1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
q1 <- flights %>%
filter(origin == 'LGA' & dest == 'XNA') %>%
left_join(planes, by = 'tailnum') %>%
select(model) %>%
distinct()
head(q1)
## # A tibble: 5 × 1
## model
## <chr>
## 1 <NA>
## 2 G1159B
## 3 172N
## 4 CF-5D
## 5 CL-600-2C10
2. join - Add the airline name to the flights table (1 POINT)
q2 <- flights %>%
left_join(airlines , by = 'carrier')
head(q2)
## # A tibble: 6 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
q3 <- airports %>%
anti_join(flights , by = c("faa" = 'origin')) %>%
anti_join(flights , by = c("faa" = 'dest')) %>%
select(faa, name) %>%
distinct()
head(q3)
## # A tibble: 6 × 2
## faa name
## <chr> <chr>
## 1 04G Lansdowne Airport
## 2 06A Moton Field Municipal Airport
## 3 06C Schaumburg Regional
## 4 06N Randall Airport
## 5 09J Jekyll Island Airport
## 6 0A9 Elizabethton Municipal Airport