Create the code makes a table for each of the below questions.

library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

1. join + filter - Which airplanes fly LGA to XNA (1 POINT)

library(nycflights13)
library(tidyverse)

q1 <- flights %>%
  inner_join(airports, by = c("origin" = "faa")) %>%
  inner_join(airports, by = c("dest" = "faa"), suffix = c("_origin", "_dest")) %>%
  filter(origin == 'LGA', dest == 'XNA') %>%
  select(flight, tailnum, origin, dest)

head(q1 , 10)
## # A tibble: 10 × 4
##    flight tailnum origin dest 
##     <int> <chr>   <chr>  <chr>
##  1   4534 N722MQ  LGA    XNA  
##  2   4525 N719MQ  LGA    XNA  
##  3   4413 N739MQ  LGA    XNA  
##  4   4534 N719MQ  LGA    XNA  
##  5   4525 N711MQ  LGA    XNA  
##  6   4413 N723MQ  LGA    XNA  
##  7   4534 N711MQ  LGA    XNA  
##  8   4525 N730MQ  LGA    XNA  
##  9   4413 N722MQ  LGA    XNA  
## 10   4534 N719MQ  LGA    XNA

2. join - Add the airline name to the flights table (1 POINT)

q2 <- flights %>%
  left_join(airlines, by = "carrier")
q2
## # A tibble: 336,776 × 20
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ℹ 336,766 more rows
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>

3. join + select + distinct() - Which airports have no commercial flights (1 POINT)

q3 <- airports %>%
  anti_join(flights, by = c("faa" = "origin")) %>%
  anti_join(flights, by = c("faa" = "dest")) %>%
  select(name) %>%
  distinct()
q3
## # A tibble: 1,337 × 1
##    name                          
##    <chr>                         
##  1 Lansdowne Airport             
##  2 Moton Field Municipal Airport 
##  3 Schaumburg Regional           
##  4 Randall Airport               
##  5 Jekyll Island Airport         
##  6 Elizabethton Municipal Airport
##  7 Williams County Airport       
##  8 Finger Lakes Regional Airport 
##  9 Shoestring Aviation Airfield  
## 10 Jefferson County Intl         
## # ℹ 1,327 more rows

4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT

Create a table with the names of the airports with the most

winds (wind_speed > 30). The table must contain only the airport

name (airports$name) and no duplicate rows

q4 <- airports %>%
  inner_join(weather, by = c("faa" = "origin")) %>%
  filter(wind_speed > 30) %>%
  select(name) %>%
  distinct()
q4
## # A tibble: 3 × 1
##   name               
##   <chr>              
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia