Create the code makes a table for each of the below questions.
library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
library(nycflights13)
library(tidyverse)
q1 <- flights %>%
inner_join(airports, by = c("origin" = "faa")) %>%
inner_join(airports, by = c("dest" = "faa"), suffix = c("_origin", "_dest")) %>%
filter(origin == 'LGA', dest == 'XNA') %>%
select(flight, tailnum, origin, dest)
head(q1 , 10)
## # A tibble: 10 × 4
## flight tailnum origin dest
## <int> <chr> <chr> <chr>
## 1 4534 N722MQ LGA XNA
## 2 4525 N719MQ LGA XNA
## 3 4413 N739MQ LGA XNA
## 4 4534 N719MQ LGA XNA
## 5 4525 N711MQ LGA XNA
## 6 4413 N723MQ LGA XNA
## 7 4534 N711MQ LGA XNA
## 8 4525 N730MQ LGA XNA
## 9 4413 N722MQ LGA XNA
## 10 4534 N719MQ LGA XNA
2. join - Add the airline name to the flights table (1 POINT)
q2 <- flights %>%
left_join(airlines, by = "carrier")
q2
## # A tibble: 336,776 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 336,766 more rows
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
q3 <- airports %>%
anti_join(flights, by = c("faa" = "origin")) %>%
anti_join(flights, by = c("faa" = "dest")) %>%
select(name) %>%
distinct()
q3
## # A tibble: 1,337 × 1
## name
## <chr>
## 1 Lansdowne Airport
## 2 Moton Field Municipal Airport
## 3 Schaumburg Regional
## 4 Randall Airport
## 5 Jekyll Island Airport
## 6 Elizabethton Municipal Airport
## 7 Williams County Airport
## 8 Finger Lakes Regional Airport
## 9 Shoestring Aviation Airfield
## 10 Jefferson County Intl
## # ℹ 1,327 more rows
Create a table with the names of the airports with the most
winds (wind_speed > 30). The table must contain only the
airport
name (airports$name) and no duplicate rows
q4 <- airports %>%
inner_join(weather, by = c("faa" = "origin")) %>%
filter(wind_speed > 30) %>%
select(name) %>%
distinct()
q4
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia