library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# All viewing code hidden completely
lga_to_xna <- flights %>%
inner_join(planes, by ="tailnum") %>%
filter(origin == "LGA" & dest == "XNA") %>%
select(model) %>%
distinct()
print(lga_to_xna)
## # A tibble: 4 × 1
## model
## <chr>
## 1 G1159B
## 2 172N
## 3 CF-5D
## 4 CL-600-2C10
q1 <- flights %>%
inner_join(airlines, by = "carrier")
print(head(q1))
## # A tibble: 6 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
airports_no_comcommercial <- airports %>%
anti_join(flights, by = c("faa" = "dest")) %>%
anti_join(flights, by = c("faa" = "origin")) %>%
select(faa, name) %>%
distinct()
print(airports_no_comcommercial)
## # A tibble: 1,355 × 2
## faa name
## <chr> <chr>
## 1 04G Lansdowne Airport
## 2 06A Moton Field Municipal Airport
## 3 06C Schaumburg Regional
## 4 06N Randall Airport
## 5 09J Jekyll Island Airport
## 6 0A9 Elizabethton Municipal Airport
## 7 0G6 Williams County Airport
## 8 0G7 Finger Lakes Regional Airport
## 9 0P2 Shoestring Aviation Airfield
## 10 0S9 Jefferson County Intl
## # ℹ 1,345 more rows
Create a table with the names of the airports with the most winds (wind_speed > 30). The table must contain only the airport name (airports$name) and no duplicate rows
airports_high_winds <- weather %>%
filter(wind_speed > 30) %>%
group_by(origin) %>%
summarize(high_wind_count = n()) %>%
arrange(desc(high_wind_count)) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
print(airports_high_winds)
## # A tibble: 3 × 1
## name
## <chr>
## 1 John F Kennedy Intl
## 2 La Guardia
## 3 Newark Liberty Intl