use the below code to look at the data - DO NOT ADD VIEW STATEMENTS
TO RMARKDOWN
Create the code makes a table for each of the below questions.
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
q1 <- flights %>%
filter(origin == "LGA" , dest == "XNA") %>%
left_join(planes, by = "tailnum") %>%
select(model) %>%
distinct()
knitr::kable(head(q1))
NA |
G1159B |
172N |
CF-5D |
CL-600-2C10 |
2. join - Add the airline name to the flights table (1 POINT)
q2 <- flights %>%
left_join(airlines , by = "carrier") %>%
select(carrier, name, year, month, day, dep_time, sched_dep_time, dep_delay, arr_time, sched_arr_time, arr_delay, carrier, flight, tailnum, origin, dest, air_time, distance, hour, minute, time_hour)
knitr::kable(head(q2))
UA |
United Air Lines Inc. |
2013 |
1 |
1 |
517 |
515 |
2 |
830 |
819 |
11 |
1545 |
N14228 |
EWR |
IAH |
227 |
1400 |
5 |
15 |
2013-01-01 05:00:00 |
UA |
United Air Lines Inc. |
2013 |
1 |
1 |
533 |
529 |
4 |
850 |
830 |
20 |
1714 |
N24211 |
LGA |
IAH |
227 |
1416 |
5 |
29 |
2013-01-01 05:00:00 |
AA |
American Airlines Inc. |
2013 |
1 |
1 |
542 |
540 |
2 |
923 |
850 |
33 |
1141 |
N619AA |
JFK |
MIA |
160 |
1089 |
5 |
40 |
2013-01-01 05:00:00 |
B6 |
JetBlue Airways |
2013 |
1 |
1 |
544 |
545 |
-1 |
1004 |
1022 |
-18 |
725 |
N804JB |
JFK |
BQN |
183 |
1576 |
5 |
45 |
2013-01-01 05:00:00 |
DL |
Delta Air Lines Inc. |
2013 |
1 |
1 |
554 |
600 |
-6 |
812 |
837 |
-25 |
461 |
N668DN |
LGA |
ATL |
116 |
762 |
6 |
0 |
2013-01-01 06:00:00 |
UA |
United Air Lines Inc. |
2013 |
1 |
1 |
554 |
558 |
-4 |
740 |
728 |
12 |
1696 |
N39463 |
EWR |
ORD |
150 |
719 |
5 |
58 |
2013-01-01 05:00:00 |
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
q3 <- airports %>%
anti_join(flights, by = c("faa" = "origin")) %>%
anti_join(flights, by = c("faa" = "dest")) %>%
select(faa, name) %>%
distinct()
knitr::kable(head(q3))
04G |
Lansdowne Airport |
06A |
Moton Field Municipal Airport |
06C |
Schaumburg Regional |
06N |
Randall Airport |
09J |
Jekyll Island Airport |
0A9 |
Elizabethton Municipal Airport |
Create a table with the names of the airports with the most
winds (wind_speed > 30). The table must contain only the
airport
name (airports$name) and no duplicate rows
q4 <- weather %>%
filter(wind_speed > 30) %>%
left_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
knitr::kable(head(q4))
Newark Liberty Intl |
John F Kennedy Intl |
La Guardia |