Create the code makes a table for each of the below questions.

1. join + filter - Which airplanes fly LGA to XNA (1 POINT)

lga_to_xna_flights <- flights %>%
  filter(origin == "LGA", dest == "XNA") %>%
  left_join(planes, by = "tailnum") %>%
  select(model) %>%
  distinct()

head(lga_to_xna_flights)
## # A tibble: 5 × 1
##   model      
##   <chr>      
## 1 <NA>       
## 2 G1159B     
## 3 172N       
## 4 CF-5D      
## 5 CL-600-2C10

2. join - Add the airline name to the flights table (1 POINT)

flights_with_airline <- flights %>%
  left_join(airlines, by = "carrier")

head(flights_with_airline)
## # A tibble: 6 × 20
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1  2013     1     1      517            515         2      830            819
## 2  2013     1     1      533            529         4      850            830
## 3  2013     1     1      542            540         2      923            850
## 4  2013     1     1      544            545        -1     1004           1022
## 5  2013     1     1      554            600        -6      812            837
## 6  2013     1     1      554            558        -4      740            728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>

3. join + select + distinct() - Which airports have no commercial flights (1 POINT)

airports_with_flights <- flights %>%
  select(origin, dest) %>%
  pivot_longer(cols = c(origin, dest), names_to = "type", values_to = "faa") %>%
  distinct(faa)

airports_no_flights <- airports %>%
  anti_join(airports_with_flights, by = "faa") %>%
  select(faa, name) %>%
  distinct()

head(airports_no_flights)
## # A tibble: 6 × 2
##   faa   name                          
##   <chr> <chr>                         
## 1 04G   Lansdowne Airport             
## 2 06A   Moton Field Municipal Airport 
## 3 06C   Schaumburg Regional           
## 4 06N   Randall Airport               
## 5 09J   Jekyll Island Airport         
## 6 0A9   Elizabethton Municipal Airport

4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT

Create a table with the names of the airports with the most

winds (wind_speed > 30). The table must contain only the airport

name (airports$name) and no duplicate rows

windy_airports <- weather %>%
  filter(wind_speed > 30) %>%
  distinct(origin)

windy_airports_names <- windy_airports %>%
  left_join(airports, by = c("origin" = "faa")) %>%
  select(name) %>%
  distinct()

head(windy_airports_names)
## # A tibble: 3 × 1
##   name               
##   <chr>              
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia