R Markdown
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
q1 <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
left_join(planes, by = "tailnum") %>%
select( manufacturer, model, seats, engines, type) %>%
distinct()
q1
## # A tibble: 5 × 5
## manufacturer model seats engines type
## <chr> <chr> <int> <int> <chr>
## 1 <NA> <NA> NA NA <NA>
## 2 GULFSTREAM AEROSPACE G1159B 22 2 Fixed wing multi engine
## 3 CESSNA 172N 4 1 Fixed wing single engine
## 4 CANADAIR LTD CF-5D 2 4 Fixed wing multi engine
## 5 BOMBARDIER INC CL-600-2C10 80 2 Fixed wing multi engine
2. join - Add the airline name to the flights table (1 POINT)
q2 <- flights %>%
left_join(airlines, by = "carrier") %>%
select(flight, carrier, name, origin, dest, tailnum, everything())
q2
## # A tibble: 336,776 × 20
## flight carrier name origin dest tailnum year month day dep_time
## <int> <chr> <chr> <chr> <chr> <chr> <int> <int> <int> <int>
## 1 1545 UA United Air Li… EWR IAH N14228 2013 1 1 517
## 2 1714 UA United Air Li… LGA IAH N24211 2013 1 1 533
## 3 1141 AA American Airl… JFK MIA N619AA 2013 1 1 542
## 4 725 B6 JetBlue Airwa… JFK BQN N804JB 2013 1 1 544
## 5 461 DL Delta Air Lin… LGA ATL N668DN 2013 1 1 554
## 6 1696 UA United Air Li… EWR ORD N39463 2013 1 1 554
## 7 507 B6 JetBlue Airwa… EWR FLL N516JB 2013 1 1 555
## 8 5708 EV ExpressJet Ai… LGA IAD N829AS 2013 1 1 557
## 9 79 B6 JetBlue Airwa… JFK MCO N593JB 2013 1 1 557
## 10 301 AA American Airl… LGA ORD N3ALAA 2013 1 1 558
## # ℹ 336,766 more rows
## # ℹ 10 more variables: sched_dep_time <int>, dep_delay <dbl>, arr_time <int>,
## # sched_arr_time <int>, arr_delay <dbl>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
q3 <- airports %>%
anti_join(flights, by = c("faa" = "origin")) %>%
anti_join(flights, by = c("faa" = "dest")) %>%
select(faa, name, lat, lon, alt, tz, dst) %>%
distinct()
q3
## # A tibble: 1,355 × 7
## faa name lat lon alt tz dst
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A
## 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A
## 4 06N Randall Airport 41.4 -74.4 523 -5 A
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -5 A
## 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8 492 -5 A
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6 1000 -5 U
## 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A
## # ℹ 1,345 more rows
Create a table with the names of the airports with the most
winds (wind_speed > 30). The table must contain only the
airport
name (airports$name) and no duplicate rows
q4 <- weather %>%
filter(wind_speed > 30) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
q4
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia