Q1 <-
full_join(
flights,
planes,
by = "tailnum"
) %>%
filter(
origin == "LGA",
dest == "XNA"
) %>%
select(
origin,
dest,
tailnum,
manufacturer,
model
) %>%
distinct(
tailnum,
.keep_all = TRUE
) %>%
arrange(tailnum)
head(Q1)
## # A tibble: 6 × 5
## origin dest tailnum manufacturer model
## <chr> <chr> <chr> <chr> <chr>
## 1 LGA XNA N0EGMQ <NA> <NA>
## 2 LGA XNA N501MQ <NA> <NA>
## 3 LGA XNA N507MQ <NA> <NA>
## 4 LGA XNA N510MQ <NA> <NA>
## 5 LGA XNA N511MQ <NA> <NA>
## 6 LGA XNA N512MQ <NA> <NA>
Q2 <-
left_join(
flights,
airlines,
by = "carrier"
) %>%
mutate(date = as.Date(paste(
year,
month,
day,
sep = "-"
))) %>%
select(
date,
carrier,
name,
flight,
tailnum,
origin,
dest,
dep_time,
arr_time,
dep_delay,
arr_delay
) %>%
arrange(
date,
dep_time,
flight
)
head(Q2)
## # A tibble: 6 × 11
## date carrier name flight tailnum origin dest dep_time arr_time
## <date> <chr> <chr> <int> <chr> <chr> <chr> <int> <int>
## 1 2013-01-01 UA United Air L… 1545 N14228 EWR IAH 517 830
## 2 2013-01-01 UA United Air L… 1714 N24211 LGA IAH 533 850
## 3 2013-01-01 AA American Air… 1141 N619AA JFK MIA 542 923
## 4 2013-01-01 B6 JetBlue Airw… 725 N804JB JFK BQN 544 1004
## 5 2013-01-01 DL Delta Air Li… 461 N668DN LGA ATL 554 812
## 6 2013-01-01 UA United Air L… 1696 N39463 EWR ORD 554 740
## # ℹ 2 more variables: dep_delay <dbl>, arr_delay <dbl>
Q3 <-
anti_join(
airports,
flights,
by = c("faa" = "origin")
) %>%
anti_join(
flights,
by = c("faa" = "dest")
) %>%
select(
faa,
name,
alt,
dst,
tzone
)
head(Q3)
## # A tibble: 6 × 5
## faa name alt dst tzone
## <chr> <chr> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 1044 A America/New_York
## 2 06A Moton Field Municipal Airport 264 A America/Chicago
## 3 06C Schaumburg Regional 801 A America/Chicago
## 4 06N Randall Airport 523 A America/New_York
## 5 09J Jekyll Island Airport 11 A America/New_York
## 6 0A9 Elizabethton Municipal Airport 1593 A America/New_York
Q4 <-
right_join(
airports,
weather %>%
filter(wind_speed > 30) %>%
group_by(origin) %>%
summarise(high_winds = sum(!is.na(wind_speed))),
by = c("faa" = "origin")
) %>%
arrange(desc(high_winds)) %>%
select(name)
head(Q4)
## # A tibble: 3 × 1
## name
## <chr>
## 1 John F Kennedy Intl
## 2 La Guardia
## 3 Newark Liberty Intl