library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)


movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

q1 <- movies %>%
  rename(movie_title = Film , release_year = Year)

head(q1)

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

q2 <- q1 %>%
  select(movie_title, release_year, Genre, Profitability)

head(q2)

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

q3 <- q1 %>%
  filter(release_year > 2000 & 'Rotten Tomatoes %' > 80)

head(q3)

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

q4 <- q3 %>%
  mutate(Profitability_millions = Profitability*1e6)

head(q4)

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

q5 <- q4 %>%
  arrange(desc('Rotten Tomatoes %'), desc(Profitability_millions))

head(q5)

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

q6 <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, 'Rotten Tomatoes %') %>%
  filter(release_year > 2000 & 'Rotten Tomatoes %' > 80) %>%
  mutate(Profitability_millions = Profitability * 1e6) %>%
  arrange(desc('Rotten Tomatoes %'), desc(Profitability_millions))

head(q6)

7. Interpret question 6 (1 point)

EXTRA CREDIT (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

summary_df <- movies %>%
  group_by(Genre) %>%
  summarize(
    Avg_Rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    Avg_Profitability_millions = mean(Profitability, na.rm = TRUE)
  )

print(summary_df)