library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
result <- flights %>%
inner_join(planes, by = "tailnum") %>%
filter(origin == "LGA", dest == "XNA")
head(result)
## # A tibble: 6 × 27
## year.x month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 2 1531 1530 1 1846 1805
## 2 2013 1 3 703 705 -2 1014 940
## 3 2013 1 7 1737 1745 -8 2009 2020
## 4 2013 1 9 1736 1745 -9 2008 2020
## 5 2013 1 13 1741 1745 -4 2028 2020
## 6 2013 1 14 1530 1530 0 1914 1805
## # ℹ 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
## # manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
## # engine <chr>
2. join - Add the airline name to the flights table (1 POINT)
flights_with_airline <- flights %>%
inner_join(airlines, by = "carrier")
head(flights_with_airline)
## # A tibble: 6 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
no_commercial_flights <- airports %>%
anti_join(flights, by = c("faa" = "origin")) %>%
anti_join(flights, by = c("faa" = "dest")) %>%
select(faa, name, lat, lon) %>% # Select relevant airport details
distinct() # Remove duplicates
head(no_commercial_flights)
## # A tibble: 6 × 4
## faa name lat lon
## <chr> <chr> <dbl> <dbl>
## 1 04G Lansdowne Airport 41.1 -80.6
## 2 06A Moton Field Municipal Airport 32.5 -85.7
## 3 06C Schaumburg Regional 42.0 -88.1
## 4 06N Randall Airport 41.4 -74.4
## 5 09J Jekyll Island Airport 31.1 -81.4
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2
Create a table with the names of the airports with the most
winds (wind_speed > 30). The table must contain only the
airport
name (airports$name) and no duplicate rows
windy_airports <- weather %>%
filter(wind_speed > 30) %>%
distinct(origin) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name)
head(windy_airports)
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia