1️ Membaca Dataset dari CSV

housing_data <- read.csv("C:\\Users\\User\\Downloads\\Housing.csv", header = TRUE, sep = ",")
head(housing_data)
##      price area bedrooms bathrooms stories mainroad guestroom basement
## 1 13300000 7420        4         2       3      yes        no       no
## 2 12250000 8960        4         4       4      yes        no       no
## 3 12250000 9960        3         2       2      yes        no      yes
## 4 12215000 7500        4         2       2      yes        no      yes
## 5 11410000 7420        4         1       2      yes       yes      yes
## 6 10850000 7500        3         3       1      yes        no      yes
##   hotwaterheating airconditioning parking prefarea furnishingstatus
## 1              no             yes       2      yes        furnished
## 2              no             yes       3       no        furnished
## 3              no              no       2      yes   semi-furnished
## 4              no             yes       3      yes        furnished
## 5              no             yes       2       no        furnished
## 6              no             yes       2      yes   semi-furnished

2️# Mengecek tipe data

str(housing_data)
## 'data.frame':    545 obs. of  13 variables:
##  $ price           : int  13300000 12250000 12250000 12215000 11410000 10850000 10150000 10150000 9870000 9800000 ...
##  $ area            : int  7420 8960 9960 7500 7420 7500 8580 16200 8100 5750 ...
##  $ bedrooms        : int  4 4 3 4 4 3 4 5 4 3 ...
##  $ bathrooms       : int  2 4 2 2 1 3 3 3 1 2 ...
##  $ stories         : int  3 4 2 2 2 1 4 2 2 4 ...
##  $ mainroad        : chr  "yes" "yes" "yes" "yes" ...
##  $ guestroom       : chr  "no" "no" "no" "no" ...
##  $ basement        : chr  "no" "no" "yes" "yes" ...
##  $ hotwaterheating : chr  "no" "no" "no" "no" ...
##  $ airconditioning : chr  "yes" "yes" "no" "yes" ...
##  $ parking         : int  2 3 2 3 2 2 2 0 2 1 ...
##  $ prefarea        : chr  "yes" "no" "yes" "yes" ...
##  $ furnishingstatus: chr  "furnished" "furnished" "semi-furnished" "furnished" ...

3️ Menghapus Kolom yang memiliki tipe data teks

housing_data <- Filter(function(x) !is.character(x), housing_data)
str(housing_data)
## 'data.frame':    545 obs. of  6 variables:
##  $ price    : int  13300000 12250000 12250000 12215000 11410000 10850000 10150000 10150000 9870000 9800000 ...
##  $ area     : int  7420 8960 9960 7500 7420 7500 8580 16200 8100 5750 ...
##  $ bedrooms : int  4 4 3 4 4 3 4 5 4 3 ...
##  $ bathrooms: int  2 4 2 2 1 3 3 3 1 2 ...
##  $ stories  : int  3 4 2 2 2 1 4 2 2 4 ...
##  $ parking  : int  2 3 2 3 2 2 2 0 2 1 ...

4️ Mengonversi dataset ke dalam bentuk matriks

housing_matrix <- as.matrix(housing_data)
housing_matrix
##           price  area bedrooms bathrooms stories parking
##   [1,] 13300000  7420        4         2       3       2
##   [2,] 12250000  8960        4         4       4       3
##   [3,] 12250000  9960        3         2       2       2
##   [4,] 12215000  7500        4         2       2       3
##   [5,] 11410000  7420        4         1       2       2
##   [6,] 10850000  7500        3         3       1       2
##   [7,] 10150000  8580        4         3       4       2
##   [8,] 10150000 16200        5         3       2       0
##   [9,]  9870000  8100        4         1       2       2
##  [10,]  9800000  5750        3         2       4       1
##  [11,]  9800000 13200        3         1       2       2
##  [12,]  9681000  6000        4         3       2       2
##  [13,]  9310000  6550        4         2       2       1
##  [14,]  9240000  3500        4         2       2       2
##  [15,]  9240000  7800        3         2       2       0
##  [16,]  9100000  6000        4         1       2       2
##  [17,]  9100000  6600        4         2       2       1
##  [18,]  8960000  8500        3         2       4       2
##  [19,]  8890000  4600        3         2       2       2
##  [20,]  8855000  6420        3         2       2       1
##  [21,]  8750000  4320        3         1       2       2
##  [22,]  8680000  7155        3         2       1       2
##  [23,]  8645000  8050        3         1       1       1
##  [24,]  8645000  4560        3         2       2       1
##  [25,]  8575000  8800        3         2       2       2
##  [26,]  8540000  6540        4         2       2       2
##  [27,]  8463000  6000        3         2       4       0
##  [28,]  8400000  8875        3         1       1       1
##  [29,]  8400000  7950        5         2       2       2
##  [30,]  8400000  5500        4         2       2       1
##  [31,]  8400000  7475        3         2       4       2
##  [32,]  8400000  7000        3         1       4       2
##  [33,]  8295000  4880        4         2       2       1
##  [34,]  8190000  5960        3         3       2       1
##  [35,]  8120000  6840        5         1       2       1
##  [36,]  8080940  7000        3         2       4       2
##  [37,]  8043000  7482        3         2       3       1
##  [38,]  7980000  9000        4         2       4       2
##  [39,]  7962500  6000        3         1       4       2
##  [40,]  7910000  6000        4         2       4       1
##  [41,]  7875000  6550        3         1       2       0
##  [42,]  7840000  6360        3         2       4       0
##  [43,]  7700000  6480        3         2       4       2
##  [44,]  7700000  6000        4         2       4       2
##  [45,]  7560000  6000        4         2       4       1
##  [46,]  7560000  6000        3         2       3       0
##  [47,]  7525000  6000        3         2       4       1
##  [48,]  7490000  6600        3         1       4       3
##  [49,]  7455000  4300        3         2       2       1
##  [50,]  7420000  7440        3         2       1       0
##  [51,]  7420000  7440        3         2       4       1
##  [52,]  7420000  6325        3         1       4       1
##  [53,]  7350000  6000        4         2       4       1
##  [54,]  7350000  5150        3         2       4       2
##  [55,]  7350000  6000        3         2       2       1
##  [56,]  7350000  6000        3         1       2       1
##  [57,]  7343000 11440        4         1       2       1
##  [58,]  7245000  9000        4         2       4       1
##  [59,]  7210000  7680        4         2       4       1
##  [60,]  7210000  6000        3         2       4       1
##  [61,]  7140000  6000        3         2       2       1
##  [62,]  7070000  8880        2         1       1       1
##  [63,]  7070000  6240        4         2       2       1
##  [64,]  7035000  6360        4         2       3       2
##  [65,]  7000000 11175        3         1       1       1
##  [66,]  6930000  8880        3         2       2       1
##  [67,]  6930000 13200        2         1       1       1
##  [68,]  6895000  7700        3         2       1       2
##  [69,]  6860000  6000        3         1       1       1
##  [70,]  6790000 12090        4         2       2       2
##  [71,]  6790000  4000        3         2       2       0
##  [72,]  6755000  6000        4         2       4       0
##  [73,]  6720000  5020        3         1       4       0
##  [74,]  6685000  6600        2         2       4       0
##  [75,]  6650000  4040        3         1       2       1
##  [76,]  6650000  4260        4         2       2       0
##  [77,]  6650000  6420        3         2       3       0
##  [78,]  6650000  6500        3         2       3       0
##  [79,]  6650000  5700        3         1       1       2
##  [80,]  6650000  6000        3         2       3       0
##  [81,]  6629000  6000        3         1       2       1
##  [82,]  6615000  4000        3         2       2       1
##  [83,]  6615000 10500        3         2       1       1
##  [84,]  6580000  6000        3         2       4       0
##  [85,]  6510000  3760        3         1       2       2
##  [86,]  6510000  8250        3         2       3       0
##  [87,]  6510000  6670        3         1       3       0
##  [88,]  6475000  3960        3         1       1       2
##  [89,]  6475000  7410        3         1       1       2
##  [90,]  6440000  8580        5         3       2       2
##  [91,]  6440000  5000        3         1       2       0
##  [92,]  6419000  6750        2         1       1       2
##  [93,]  6405000  4800        3         2       4       0
##  [94,]  6300000  7200        3         2       1       3
##  [95,]  6300000  6000        4         2       4       1
##  [96,]  6300000  4100        3         2       3       2
##  [97,]  6300000  9000        3         1       1       1
##  [98,]  6300000  6400        3         1       1       1
##  [99,]  6293000  6600        3         2       3       0
## [100,]  6265000  6000        4         1       3       0
## [101,]  6230000  6600        3         2       1       0
## [102,]  6230000  5500        3         1       3       1
## [103,]  6195000  5500        3         2       4       1
## [104,]  6195000  6350        3         2       3       0
## [105,]  6195000  5500        3         2       1       2
## [106,]  6160000  4500        3         1       4       0
## [107,]  6160000  5450        4         2       1       0
## [108,]  6125000  6420        3         1       3       0
## [109,]  6107500  3240        4         1       3       1
## [110,]  6090000  6615        4         2       2       1
## [111,]  6090000  6600        3         1       1       2
## [112,]  6090000  8372        3         1       3       2
## [113,]  6083000  4300        6         2       2       0
## [114,]  6083000  9620        3         1       1       2
## [115,]  6020000  6800        2         1       1       2
## [116,]  6020000  8000        3         1       1       2
## [117,]  6020000  6900        3         2       1       0
## [118,]  5950000  3700        4         1       2       0
## [119,]  5950000  6420        3         1       1       0
## [120,]  5950000  7020        3         1       1       2
## [121,]  5950000  6540        3         1       1       2
## [122,]  5950000  7231        3         1       2       0
## [123,]  5950000  6254        4         2       1       1
## [124,]  5950000  7320        4         2       2       0
## [125,]  5950000  6525        3         2       4       1
## [126,]  5943000 15600        3         1       1       2
## [127,]  5880000  7160        3         1       1       2
## [128,]  5880000  6500        3         2       3       0
## [129,]  5873000  5500        3         1       3       1
## [130,]  5873000 11460        3         1       3       2
## [131,]  5866000  4800        3         1       1       0
## [132,]  5810000  5828        4         1       4       0
## [133,]  5810000  5200        3         1       3       0
## [134,]  5810000  4800        3         1       3       0
## [135,]  5803000  7000        3         1       1       2
## [136,]  5775000  6000        3         2       4       0
## [137,]  5740000  5400        4         2       2       2
## [138,]  5740000  4640        4         1       2       1
## [139,]  5740000  5000        3         1       3       0
## [140,]  5740000  6360        3         1       1       2
## [141,]  5740000  5800        3         2       4       0
## [142,]  5652500  6660        4         2       2       1
## [143,]  5600000 10500        4         2       2       1
## [144,]  5600000  4800        5         2       3       0
## [145,]  5600000  4700        4         1       2       1
## [146,]  5600000  5000        3         1       4       0
## [147,]  5600000 10500        2         1       1       1
## [148,]  5600000  5500        3         2       2       1
## [149,]  5600000  6360        3         1       3       0
## [150,]  5600000  6600        4         2       1       0
## [151,]  5600000  5136        3         1       2       0
## [152,]  5565000  4400        4         1       2       2
## [153,]  5565000  5400        5         1       2       0
## [154,]  5530000  3300        3         3       2       0
## [155,]  5530000  3650        3         2       2       2
## [156,]  5530000  6100        3         2       1       2
## [157,]  5523000  6900        3         1       1       0
## [158,]  5495000  2817        4         2       2       1
## [159,]  5495000  7980        3         1       1       2
## [160,]  5460000  3150        3         2       1       0
## [161,]  5460000  6210        4         1       4       0
## [162,]  5460000  6100        3         1       3       0
## [163,]  5460000  6600        4         2       2       0
## [164,]  5425000  6825        3         1       1       0
## [165,]  5390000  6710        3         2       2       1
## [166,]  5383000  6450        3         2       1       0
## [167,]  5320000  7800        3         1       1       2
## [168,]  5285000  4600        2         2       1       2
## [169,]  5250000  4260        4         1       2       0
## [170,]  5250000  6540        4         2       2       0
## [171,]  5250000  5500        3         2       1       0
## [172,]  5250000 10269        3         1       1       1
## [173,]  5250000  8400        3         1       2       2
## [174,]  5250000  5300        4         2       1       0
## [175,]  5250000  3800        3         1       2       1
## [176,]  5250000  9800        4         2       2       2
## [177,]  5250000  8520        3         1       1       2
## [178,]  5243000  6050        3         1       1       0
## [179,]  5229000  7085        3         1       1       2
## [180,]  5215000  3180        3         2       2       2
## [181,]  5215000  4500        4         2       1       2
## [182,]  5215000  7200        3         1       2       1
## [183,]  5145000  3410        3         1       2       0
## [184,]  5145000  7980        3         1       1       1
## [185,]  5110000  3000        3         2       2       0
## [186,]  5110000  3000        3         1       2       0
## [187,]  5110000 11410        2         1       2       0
## [188,]  5110000  6100        3         1       1       0
## [189,]  5075000  5720        2         1       2       0
## [190,]  5040000  3540        2         1       1       0
## [191,]  5040000  7600        4         1       2       2
## [192,]  5040000 10700        3         1       2       0
## [193,]  5040000  6600        3         1       1       0
## [194,]  5033000  4800        2         1       1       0
## [195,]  5005000  8150        3         2       1       0
## [196,]  4970000  4410        4         3       2       2
## [197,]  4970000  7686        3         1       1       0
## [198,]  4956000  2800        3         2       2       1
## [199,]  4935000  5948        3         1       2       0
## [200,]  4907000  4200        3         1       2       1
## [201,]  4900000  4520        3         1       2       0
## [202,]  4900000  4095        3         1       2       0
## [203,]  4900000  4120        2         1       1       1
## [204,]  4900000  5400        4         1       2       0
## [205,]  4900000  4770        3         1       1       0
## [206,]  4900000  6300        3         1       1       2
## [207,]  4900000  5800        2         1       1       0
## [208,]  4900000  3000        3         1       2       0
## [209,]  4900000  2970        3         1       3       0
## [210,]  4900000  6720        3         1       1       0
## [211,]  4900000  4646        3         1       2       2
## [212,]  4900000 12900        3         1       1       2
## [213,]  4893000  3420        4         2       2       2
## [214,]  4893000  4995        4         2       1       0
## [215,]  4865000  4350        2         1       1       0
## [216,]  4830000  4160        3         1       3       0
## [217,]  4830000  6040        3         1       1       2
## [218,]  4830000  6862        3         1       2       2
## [219,]  4830000  4815        2         1       1       0
## [220,]  4795000  7000        3         1       2       0
## [221,]  4795000  8100        4         1       4       2
## [222,]  4767000  3420        4         2       2       0
## [223,]  4760000  9166        2         1       1       2
## [224,]  4760000  6321        3         1       2       1
## [225,]  4760000 10240        2         1       1       2
## [226,]  4753000  6440        2         1       1       3
## [227,]  4690000  5170        3         1       4       0
## [228,]  4690000  6000        2         1       1       1
## [229,]  4690000  3630        3         1       2       2
## [230,]  4690000  9667        4         2       2       1
## [231,]  4690000  5400        2         1       2       0
## [232,]  4690000  4320        3         1       1       0
## [233,]  4655000  3745        3         1       2       0
## [234,]  4620000  4160        3         1       1       0
## [235,]  4620000  3880        3         2       2       2
## [236,]  4620000  5680        3         1       2       1
## [237,]  4620000  2870        2         1       2       0
## [238,]  4620000  5010        3         1       2       0
## [239,]  4613000  4510        4         2       2       0
## [240,]  4585000  4000        3         1       2       1
## [241,]  4585000  3840        3         1       2       1
## [242,]  4550000  3760        3         1       1       2
## [243,]  4550000  3640        3         1       2       0
## [244,]  4550000  2550        3         1       2       0
## [245,]  4550000  5320        3         1       2       0
## [246,]  4550000  5360        3         1       2       2
## [247,]  4550000  3520        3         1       1       0
## [248,]  4550000  8400        4         1       4       3
## [249,]  4543000  4100        2         2       1       0
## [250,]  4543000  4990        4         2       2       0
## [251,]  4515000  3510        3         1       3       0
## [252,]  4515000  3450        3         1       2       1
## [253,]  4515000  9860        3         1       1       0
## [254,]  4515000  3520        2         1       2       0
## [255,]  4480000  4510        4         1       2       2
## [256,]  4480000  5885        2         1       1       1
## [257,]  4480000  4000        3         1       2       2
## [258,]  4480000  8250        3         1       1       0
## [259,]  4480000  4040        3         1       2       1
## [260,]  4473000  6360        2         1       1       1
## [261,]  4473000  3162        3         1       2       1
## [262,]  4473000  3510        3         1       2       0
## [263,]  4445000  3750        2         1       1       0
## [264,]  4410000  3968        3         1       2       0
## [265,]  4410000  4900        2         1       2       0
## [266,]  4403000  2880        3         1       2       0
## [267,]  4403000  4880        3         1       1       2
## [268,]  4403000  4920        3         1       2       1
## [269,]  4382000  4950        4         1       2       0
## [270,]  4375000  3900        3         1       2       0
## [271,]  4340000  4500        3         2       3       1
## [272,]  4340000  1905        5         1       2       0
## [273,]  4340000  4075        3         1       1       2
## [274,]  4340000  3500        4         1       2       2
## [275,]  4340000  6450        4         1       2       0
## [276,]  4319000  4032        2         1       1       0
## [277,]  4305000  4400        2         1       1       1
## [278,]  4305000 10360        2         1       1       1
## [279,]  4277000  3400        3         1       2       2
## [280,]  4270000  6360        2         1       1       0
## [281,]  4270000  6360        2         1       2       0
## [282,]  4270000  4500        2         1       1       2
## [283,]  4270000  2175        3         1       2       0
## [284,]  4270000  4360        4         1       2       0
## [285,]  4270000  7770        2         1       1       1
## [286,]  4235000  6650        3         1       2       0
## [287,]  4235000  2787        3         1       1       0
## [288,]  4200000  5500        3         1       2       0
## [289,]  4200000  5040        3         1       2       0
## [290,]  4200000  5850        2         1       1       2
## [291,]  4200000  2610        4         3       2       0
## [292,]  4200000  2953        3         1       2       0
## [293,]  4200000  2747        4         2       2       0
## [294,]  4200000  4410        2         1       1       1
## [295,]  4200000  4000        4         2       2       0
## [296,]  4200000  2325        3         1       2       0
## [297,]  4200000  4600        3         2       2       1
## [298,]  4200000  3640        3         2       2       0
## [299,]  4200000  5800        3         1       1       2
## [300,]  4200000  7000        3         1       1       3
## [301,]  4200000  4079        3         1       3       0
## [302,]  4200000  3520        3         1       2       0
## [303,]  4200000  2145        3         1       3       1
## [304,]  4200000  4500        3         1       1       0
## [305,]  4193000  8250        3         1       1       3
## [306,]  4193000  3450        3         1       2       1
## [307,]  4165000  4840        3         1       2       1
## [308,]  4165000  4080        3         1       2       2
## [309,]  4165000  4046        3         1       2       1
## [310,]  4130000  4632        4         1       2       0
## [311,]  4130000  5985        3         1       1       0
## [312,]  4123000  6060        2         1       1       1
## [313,]  4098500  3600        3         1       1       0
## [314,]  4095000  3680        3         2       2       0
## [315,]  4095000  4040        2         1       2       1
## [316,]  4095000  5600        2         1       1       0
## [317,]  4060000  5900        4         2       2       1
## [318,]  4060000  4992        3         2       2       2
## [319,]  4060000  4340        3         1       1       0
## [320,]  4060000  3000        4         1       3       2
## [321,]  4060000  4320        3         1       2       2
## [322,]  4025000  3630        3         2       2       2
## [323,]  4025000  3460        3         2       1       1
## [324,]  4025000  5400        3         1       1       3
## [325,]  4007500  4500        3         1       2       0
## [326,]  4007500  3460        4         1       2       0
## [327,]  3990000  4100        4         1       1       0
## [328,]  3990000  6480        3         1       2       1
## [329,]  3990000  4500        3         2       2       0
## [330,]  3990000  3960        3         1       2       0
## [331,]  3990000  4050        2         1       2       0
## [332,]  3920000  7260        3         2       1       3
## [333,]  3920000  5500        4         1       2       0
## [334,]  3920000  3000        3         1       2       0
## [335,]  3920000  3290        2         1       1       1
## [336,]  3920000  3816        2         1       1       2
## [337,]  3920000  8080        3         1       1       2
## [338,]  3920000  2145        4         2       1       0
## [339,]  3885000  3780        2         1       2       0
## [340,]  3885000  3180        4         2       2       0
## [341,]  3850000  5300        5         2       2       0
## [342,]  3850000  3180        2         2       1       2
## [343,]  3850000  7152        3         1       2       0
## [344,]  3850000  4080        2         1       1       0
## [345,]  3850000  3850        2         1       1       0
## [346,]  3850000  2015        3         1       2       0
## [347,]  3850000  2176        2         1       2       0
## [348,]  3836000  3350        3         1       2       0
## [349,]  3815000  3150        2         2       1       0
## [350,]  3780000  4820        3         1       2       0
## [351,]  3780000  3420        2         1       2       1
## [352,]  3780000  3600        2         1       1       0
## [353,]  3780000  5830        2         1       1       2
## [354,]  3780000  2856        3         1       3       0
## [355,]  3780000  8400        2         1       1       1
## [356,]  3773000  8250        3         1       1       2
## [357,]  3773000  2520        5         2       1       1
## [358,]  3773000  6930        4         1       2       1
## [359,]  3745000  3480        2         1       1       0
## [360,]  3710000  3600        3         1       1       1
## [361,]  3710000  4040        2         1       1       0
## [362,]  3710000  6020        3         1       1       0
## [363,]  3710000  4050        2         1       1       0
## [364,]  3710000  3584        2         1       1       0
## [365,]  3703000  3120        3         1       2       0
## [366,]  3703000  5450        2         1       1       0
## [367,]  3675000  3630        2         1       1       0
## [368,]  3675000  3630        2         1       1       0
## [369,]  3675000  5640        2         1       1       0
## [370,]  3675000  3600        2         1       1       0
## [371,]  3640000  4280        2         1       1       2
## [372,]  3640000  3570        3         1       2       0
## [373,]  3640000  3180        3         1       2       0
## [374,]  3640000  3000        2         1       2       0
## [375,]  3640000  3520        2         2       1       0
## [376,]  3640000  5960        3         1       2       0
## [377,]  3640000  4130        3         2       2       2
## [378,]  3640000  2850        3         2       2       0
## [379,]  3640000  2275        3         1       3       0
## [380,]  3633000  3520        3         1       1       2
## [381,]  3605000  4500        2         1       1       0
## [382,]  3605000  4000        2         1       1       0
## [383,]  3570000  3150        3         1       2       0
## [384,]  3570000  4500        4         2       2       2
## [385,]  3570000  4500        2         1       1       0
## [386,]  3570000  3640        2         1       1       0
## [387,]  3535000  3850        3         1       1       2
## [388,]  3500000  4240        3         1       2       0
## [389,]  3500000  3650        3         1       2       0
## [390,]  3500000  4600        4         1       2       0
## [391,]  3500000  2135        3         2       2       0
## [392,]  3500000  3036        3         1       2       0
## [393,]  3500000  3990        3         1       2       0
## [394,]  3500000  7424        3         1       1       0
## [395,]  3500000  3480        3         1       1       0
## [396,]  3500000  3600        6         1       2       1
## [397,]  3500000  3640        2         1       1       1
## [398,]  3500000  5900        2         1       1       1
## [399,]  3500000  3120        3         1       2       1
## [400,]  3500000  7350        2         1       1       1
## [401,]  3500000  3512        2         1       1       1
## [402,]  3500000  9500        3         1       2       3
## [403,]  3500000  5880        2         1       1       0
## [404,]  3500000 12944        3         1       1       0
## [405,]  3493000  4900        3         1       2       0
## [406,]  3465000  3060        3         1       1       0
## [407,]  3465000  5320        2         1       1       1
## [408,]  3465000  2145        3         1       3       0
## [409,]  3430000  4000        2         1       1       0
## [410,]  3430000  3185        2         1       1       2
## [411,]  3430000  3850        3         1       1       0
## [412,]  3430000  2145        3         1       3       0
## [413,]  3430000  2610        3         1       2       0
## [414,]  3430000  1950        3         2       2       0
## [415,]  3423000  4040        2         1       1       0
## [416,]  3395000  4785        3         1       2       1
## [417,]  3395000  3450        3         1       1       2
## [418,]  3395000  3640        2         1       1       0
## [419,]  3360000  3500        4         1       2       2
## [420,]  3360000  4960        4         1       3       0
## [421,]  3360000  4120        2         1       2       0
## [422,]  3360000  4750        2         1       1       0
## [423,]  3360000  3720        2         1       1       0
## [424,]  3360000  3750        3         1       1       0
## [425,]  3360000  3100        3         1       2       0
## [426,]  3360000  3185        2         1       1       2
## [427,]  3353000  2700        3         1       1       0
## [428,]  3332000  2145        3         1       2       0
## [429,]  3325000  4040        2         1       1       1
## [430,]  3325000  4775        4         1       2       0
## [431,]  3290000  2500        2         1       1       0
## [432,]  3290000  3180        4         1       2       0
## [433,]  3290000  6060        3         1       1       0
## [434,]  3290000  3480        4         1       2       1
## [435,]  3290000  3792        4         1       2       0
## [436,]  3290000  4040        2         1       1       0
## [437,]  3290000  2145        3         1       2       0
## [438,]  3290000  5880        3         1       1       1
## [439,]  3255000  4500        2         1       1       0
## [440,]  3255000  3930        2         1       1       0
## [441,]  3234000  3640        4         1       2       0
## [442,]  3220000  4370        3         1       2       0
## [443,]  3220000  2684        2         1       1       1
## [444,]  3220000  4320        3         1       1       1
## [445,]  3220000  3120        3         1       2       0
## [446,]  3150000  3450        1         1       1       0
## [447,]  3150000  3986        2         2       1       1
## [448,]  3150000  3500        2         1       1       0
## [449,]  3150000  4095        2         1       1       2
## [450,]  3150000  1650        3         1       2       0
## [451,]  3150000  3450        3         1       2       0
## [452,]  3150000  6750        2         1       1       0
## [453,]  3150000  9000        3         1       2       2
## [454,]  3150000  3069        2         1       1       1
## [455,]  3143000  4500        3         1       2       0
## [456,]  3129000  5495        3         1       1       0
## [457,]  3118850  2398        3         1       1       0
## [458,]  3115000  3000        3         1       1       0
## [459,]  3115000  3850        3         1       2       0
## [460,]  3115000  3500        2         1       1       0
## [461,]  3087000  8100        2         1       1       1
## [462,]  3080000  4960        2         1       1       0
## [463,]  3080000  2160        3         1       2       0
## [464,]  3080000  3090        2         1       1       0
## [465,]  3080000  4500        2         1       2       1
## [466,]  3045000  3800        2         1       1       0
## [467,]  3010000  3090        3         1       2       0
## [468,]  3010000  3240        3         1       2       2
## [469,]  3010000  2835        2         1       1       0
## [470,]  3010000  4600        2         1       1       0
## [471,]  3010000  5076        3         1       1       0
## [472,]  3010000  3750        3         1       2       0
## [473,]  3010000  3630        4         1       2       3
## [474,]  3003000  8050        2         1       1       0
## [475,]  2975000  4352        4         1       2       1
## [476,]  2961000  3000        2         1       2       0
## [477,]  2940000  5850        3         1       2       1
## [478,]  2940000  4960        2         1       1       0
## [479,]  2940000  3600        3         1       2       1
## [480,]  2940000  3660        4         1       2       0
## [481,]  2940000  3480        3         1       2       1
## [482,]  2940000  2700        2         1       1       0
## [483,]  2940000  3150        3         1       2       0
## [484,]  2940000  6615        3         1       2       0
## [485,]  2870000  3040        2         1       1       0
## [486,]  2870000  3630        2         1       1       0
## [487,]  2870000  6000        2         1       1       0
## [488,]  2870000  5400        4         1       2       0
## [489,]  2852500  5200        4         1       3       0
## [490,]  2835000  3300        3         1       2       1
## [491,]  2835000  4350        3         1       2       1
## [492,]  2835000  2640        2         1       1       1
## [493,]  2800000  2650        3         1       2       1
## [494,]  2800000  3960        3         1       1       0
## [495,]  2730000  6800        2         1       1       0
## [496,]  2730000  4000        3         1       2       1
## [497,]  2695000  4000        2         1       1       0
## [498,]  2660000  3934        2         1       1       0
## [499,]  2660000  2000        2         1       2       0
## [500,]  2660000  3630        3         3       2       0
## [501,]  2660000  2800        3         1       1       0
## [502,]  2660000  2430        3         1       1       0
## [503,]  2660000  3480        2         1       1       1
## [504,]  2660000  4000        3         1       1       0
## [505,]  2653000  3185        2         1       1       0
## [506,]  2653000  4000        3         1       2       0
## [507,]  2604000  2910        2         1       1       0
## [508,]  2590000  3600        2         1       1       0
## [509,]  2590000  4400        2         1       1       0
## [510,]  2590000  3600        2         2       2       1
## [511,]  2520000  2880        3         1       1       0
## [512,]  2520000  3180        3         1       1       0
## [513,]  2520000  3000        2         1       2       0
## [514,]  2485000  4400        3         1       2       0
## [515,]  2485000  3000        3         1       2       0
## [516,]  2450000  3210        3         1       2       0
## [517,]  2450000  3240        2         1       1       1
## [518,]  2450000  3000        2         1       1       1
## [519,]  2450000  3500        2         1       1       0
## [520,]  2450000  4840        2         1       2       0
## [521,]  2450000  7700        2         1       1       0
## [522,]  2408000  3635        2         1       1       0
## [523,]  2380000  2475        3         1       2       0
## [524,]  2380000  2787        4         2       2       0
## [525,]  2380000  3264        2         1       1       0
## [526,]  2345000  3640        2         1       1       0
## [527,]  2310000  3180        2         1       1       0
## [528,]  2275000  1836        2         1       1       0
## [529,]  2275000  3970        1         1       1       0
## [530,]  2275000  3970        3         1       2       0
## [531,]  2240000  1950        3         1       1       0
## [532,]  2233000  5300        3         1       1       0
## [533,]  2135000  3000        2         1       1       0
## [534,]  2100000  2400        3         1       2       0
## [535,]  2100000  3000        4         1       2       0
## [536,]  2100000  3360        2         1       1       1
## [537,]  1960000  3420        5         1       2       0
## [538,]  1890000  1700        3         1       2       0
## [539,]  1890000  3649        2         1       1       0
## [540,]  1855000  2990        2         1       1       1
## [541,]  1820000  3000        2         1       1       2
## [542,]  1767150  2400        3         1       1       0
## [543,]  1750000  3620        2         1       1       0
## [544,]  1750000  2910        3         1       1       0
## [545,]  1750000  3850        3         1       2       0

5️ Menghitung Eigenvalue dan Eigenvector

# Menghitung kovarians untuk mencari eigenvalues dan eigenvectors
eigen_kovarian <- eigen(cov(housing_matrix))

# Menampilkan hasil Eigenvalues dan Eigenvectors
print("eigen values")
## [1] "eigen values"
print(eigen_kovarian$values)
## [1] 3.498546e+12 3.356500e+06 7.345801e-01 5.958731e-01 3.626262e-01
## [6] 1.677009e-01
print("eigen vectors")
## [1] "eigen vectors"
print(eigen_kovarian$vectors)
##              [,1]          [,2]          [,3]          [,4]          [,5]
## [1,] 9.999998e-01  6.218809e-04  2.350022e-07  2.360030e-07 -1.896406e-08
## [2,] 6.218809e-04 -9.999998e-01 -1.068146e-04  4.693651e-05  1.227917e-05
## [3,] 1.446162e-07  2.127405e-05 -4.831235e-01 -3.524835e-01 -7.742078e-01
## [4,] 1.390319e-07  2.715391e-05 -1.156247e-01 -7.418855e-02 -1.559105e-01
## [5,] 1.951224e-07  7.936672e-05 -7.760615e-01 -2.230034e-01  5.897316e-01
## [6,] 1.770643e-07 -8.185750e-05  3.885243e-01 -9.058261e-01  1.688515e-01
##               [,6]
## [1,]  1.167426e-07
## [2,] -2.065080e-05
## [3,]  2.072422e-01
## [4,] -9.781712e-01
## [5,]  1.465063e-02
## [6,] -4.137110e-03

6️ Menghitung Variance-Covariance Matrix

cov_matrix <- cov(housing_matrix)
print(cov_matrix)
##                  price         area     bedrooms    bathrooms      stories
## price     3.498544e+12 2.175676e+09 5.059464e+05 4.864093e+05 6.826446e+05
## area      2.175676e+09 4.709512e+06 2.432321e+02 2.113466e+02 1.581294e+02
## bedrooms  5.059464e+05 2.432321e+02 5.447383e-01 1.386738e-01 2.615893e-01
## bathrooms 4.864093e+05 2.113466e+02 1.386738e-01 2.524757e-01 1.421715e-01
## stories   6.826446e+05 1.581294e+02 2.615893e-01 1.421715e-01 7.525432e-01
## parking   6.194673e+05 6.599897e+02 8.856247e-02 7.684161e-02 3.404277e-02
##                parking
## price     6.194673e+05
## area      6.599897e+02
## bedrooms  8.856247e-02
## bathrooms 7.684161e-02
## stories   3.404277e-02
## parking   7.423300e-01

7️ Menghitung Correlation Matrix

cor_matrix <- cor(housing_matrix)
print(cor_matrix)
##               price       area  bedrooms bathrooms    stories    parking
## price     1.0000000 0.53599735 0.3664940 0.5175453 0.42071237 0.38439365
## area      0.5359973 1.00000000 0.1518585 0.1938195 0.08399605 0.35298048
## bedrooms  0.3664940 0.15185849 1.0000000 0.3739302 0.40856424 0.13926990
## bathrooms 0.5175453 0.19381953 0.3739302 1.0000000 0.32616471 0.17749582
## stories   0.4207124 0.08399605 0.4085642 0.3261647 1.00000000 0.04554709
## parking   0.3843936 0.35298048 0.1392699 0.1774958 0.04554709 1.00000000

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.