housing_data <- read.csv("C:\\Users\\User\\Downloads\\Housing.csv", header = TRUE, sep = ",")
head(housing_data)
## price area bedrooms bathrooms stories mainroad guestroom basement
## 1 13300000 7420 4 2 3 yes no no
## 2 12250000 8960 4 4 4 yes no no
## 3 12250000 9960 3 2 2 yes no yes
## 4 12215000 7500 4 2 2 yes no yes
## 5 11410000 7420 4 1 2 yes yes yes
## 6 10850000 7500 3 3 1 yes no yes
## hotwaterheating airconditioning parking prefarea furnishingstatus
## 1 no yes 2 yes furnished
## 2 no yes 3 no furnished
## 3 no no 2 yes semi-furnished
## 4 no yes 3 yes furnished
## 5 no yes 2 no furnished
## 6 no yes 2 yes semi-furnished
str(housing_data)
## 'data.frame': 545 obs. of 13 variables:
## $ price : int 13300000 12250000 12250000 12215000 11410000 10850000 10150000 10150000 9870000 9800000 ...
## $ area : int 7420 8960 9960 7500 7420 7500 8580 16200 8100 5750 ...
## $ bedrooms : int 4 4 3 4 4 3 4 5 4 3 ...
## $ bathrooms : int 2 4 2 2 1 3 3 3 1 2 ...
## $ stories : int 3 4 2 2 2 1 4 2 2 4 ...
## $ mainroad : chr "yes" "yes" "yes" "yes" ...
## $ guestroom : chr "no" "no" "no" "no" ...
## $ basement : chr "no" "no" "yes" "yes" ...
## $ hotwaterheating : chr "no" "no" "no" "no" ...
## $ airconditioning : chr "yes" "yes" "no" "yes" ...
## $ parking : int 2 3 2 3 2 2 2 0 2 1 ...
## $ prefarea : chr "yes" "no" "yes" "yes" ...
## $ furnishingstatus: chr "furnished" "furnished" "semi-furnished" "furnished" ...
housing_data <- Filter(function(x) !is.character(x), housing_data)
str(housing_data)
## 'data.frame': 545 obs. of 6 variables:
## $ price : int 13300000 12250000 12250000 12215000 11410000 10850000 10150000 10150000 9870000 9800000 ...
## $ area : int 7420 8960 9960 7500 7420 7500 8580 16200 8100 5750 ...
## $ bedrooms : int 4 4 3 4 4 3 4 5 4 3 ...
## $ bathrooms: int 2 4 2 2 1 3 3 3 1 2 ...
## $ stories : int 3 4 2 2 2 1 4 2 2 4 ...
## $ parking : int 2 3 2 3 2 2 2 0 2 1 ...
housing_matrix <- as.matrix(housing_data)
housing_matrix
## price area bedrooms bathrooms stories parking
## [1,] 13300000 7420 4 2 3 2
## [2,] 12250000 8960 4 4 4 3
## [3,] 12250000 9960 3 2 2 2
## [4,] 12215000 7500 4 2 2 3
## [5,] 11410000 7420 4 1 2 2
## [6,] 10850000 7500 3 3 1 2
## [7,] 10150000 8580 4 3 4 2
## [8,] 10150000 16200 5 3 2 0
## [9,] 9870000 8100 4 1 2 2
## [10,] 9800000 5750 3 2 4 1
## [11,] 9800000 13200 3 1 2 2
## [12,] 9681000 6000 4 3 2 2
## [13,] 9310000 6550 4 2 2 1
## [14,] 9240000 3500 4 2 2 2
## [15,] 9240000 7800 3 2 2 0
## [16,] 9100000 6000 4 1 2 2
## [17,] 9100000 6600 4 2 2 1
## [18,] 8960000 8500 3 2 4 2
## [19,] 8890000 4600 3 2 2 2
## [20,] 8855000 6420 3 2 2 1
## [21,] 8750000 4320 3 1 2 2
## [22,] 8680000 7155 3 2 1 2
## [23,] 8645000 8050 3 1 1 1
## [24,] 8645000 4560 3 2 2 1
## [25,] 8575000 8800 3 2 2 2
## [26,] 8540000 6540 4 2 2 2
## [27,] 8463000 6000 3 2 4 0
## [28,] 8400000 8875 3 1 1 1
## [29,] 8400000 7950 5 2 2 2
## [30,] 8400000 5500 4 2 2 1
## [31,] 8400000 7475 3 2 4 2
## [32,] 8400000 7000 3 1 4 2
## [33,] 8295000 4880 4 2 2 1
## [34,] 8190000 5960 3 3 2 1
## [35,] 8120000 6840 5 1 2 1
## [36,] 8080940 7000 3 2 4 2
## [37,] 8043000 7482 3 2 3 1
## [38,] 7980000 9000 4 2 4 2
## [39,] 7962500 6000 3 1 4 2
## [40,] 7910000 6000 4 2 4 1
## [41,] 7875000 6550 3 1 2 0
## [42,] 7840000 6360 3 2 4 0
## [43,] 7700000 6480 3 2 4 2
## [44,] 7700000 6000 4 2 4 2
## [45,] 7560000 6000 4 2 4 1
## [46,] 7560000 6000 3 2 3 0
## [47,] 7525000 6000 3 2 4 1
## [48,] 7490000 6600 3 1 4 3
## [49,] 7455000 4300 3 2 2 1
## [50,] 7420000 7440 3 2 1 0
## [51,] 7420000 7440 3 2 4 1
## [52,] 7420000 6325 3 1 4 1
## [53,] 7350000 6000 4 2 4 1
## [54,] 7350000 5150 3 2 4 2
## [55,] 7350000 6000 3 2 2 1
## [56,] 7350000 6000 3 1 2 1
## [57,] 7343000 11440 4 1 2 1
## [58,] 7245000 9000 4 2 4 1
## [59,] 7210000 7680 4 2 4 1
## [60,] 7210000 6000 3 2 4 1
## [61,] 7140000 6000 3 2 2 1
## [62,] 7070000 8880 2 1 1 1
## [63,] 7070000 6240 4 2 2 1
## [64,] 7035000 6360 4 2 3 2
## [65,] 7000000 11175 3 1 1 1
## [66,] 6930000 8880 3 2 2 1
## [67,] 6930000 13200 2 1 1 1
## [68,] 6895000 7700 3 2 1 2
## [69,] 6860000 6000 3 1 1 1
## [70,] 6790000 12090 4 2 2 2
## [71,] 6790000 4000 3 2 2 0
## [72,] 6755000 6000 4 2 4 0
## [73,] 6720000 5020 3 1 4 0
## [74,] 6685000 6600 2 2 4 0
## [75,] 6650000 4040 3 1 2 1
## [76,] 6650000 4260 4 2 2 0
## [77,] 6650000 6420 3 2 3 0
## [78,] 6650000 6500 3 2 3 0
## [79,] 6650000 5700 3 1 1 2
## [80,] 6650000 6000 3 2 3 0
## [81,] 6629000 6000 3 1 2 1
## [82,] 6615000 4000 3 2 2 1
## [83,] 6615000 10500 3 2 1 1
## [84,] 6580000 6000 3 2 4 0
## [85,] 6510000 3760 3 1 2 2
## [86,] 6510000 8250 3 2 3 0
## [87,] 6510000 6670 3 1 3 0
## [88,] 6475000 3960 3 1 1 2
## [89,] 6475000 7410 3 1 1 2
## [90,] 6440000 8580 5 3 2 2
## [91,] 6440000 5000 3 1 2 0
## [92,] 6419000 6750 2 1 1 2
## [93,] 6405000 4800 3 2 4 0
## [94,] 6300000 7200 3 2 1 3
## [95,] 6300000 6000 4 2 4 1
## [96,] 6300000 4100 3 2 3 2
## [97,] 6300000 9000 3 1 1 1
## [98,] 6300000 6400 3 1 1 1
## [99,] 6293000 6600 3 2 3 0
## [100,] 6265000 6000 4 1 3 0
## [101,] 6230000 6600 3 2 1 0
## [102,] 6230000 5500 3 1 3 1
## [103,] 6195000 5500 3 2 4 1
## [104,] 6195000 6350 3 2 3 0
## [105,] 6195000 5500 3 2 1 2
## [106,] 6160000 4500 3 1 4 0
## [107,] 6160000 5450 4 2 1 0
## [108,] 6125000 6420 3 1 3 0
## [109,] 6107500 3240 4 1 3 1
## [110,] 6090000 6615 4 2 2 1
## [111,] 6090000 6600 3 1 1 2
## [112,] 6090000 8372 3 1 3 2
## [113,] 6083000 4300 6 2 2 0
## [114,] 6083000 9620 3 1 1 2
## [115,] 6020000 6800 2 1 1 2
## [116,] 6020000 8000 3 1 1 2
## [117,] 6020000 6900 3 2 1 0
## [118,] 5950000 3700 4 1 2 0
## [119,] 5950000 6420 3 1 1 0
## [120,] 5950000 7020 3 1 1 2
## [121,] 5950000 6540 3 1 1 2
## [122,] 5950000 7231 3 1 2 0
## [123,] 5950000 6254 4 2 1 1
## [124,] 5950000 7320 4 2 2 0
## [125,] 5950000 6525 3 2 4 1
## [126,] 5943000 15600 3 1 1 2
## [127,] 5880000 7160 3 1 1 2
## [128,] 5880000 6500 3 2 3 0
## [129,] 5873000 5500 3 1 3 1
## [130,] 5873000 11460 3 1 3 2
## [131,] 5866000 4800 3 1 1 0
## [132,] 5810000 5828 4 1 4 0
## [133,] 5810000 5200 3 1 3 0
## [134,] 5810000 4800 3 1 3 0
## [135,] 5803000 7000 3 1 1 2
## [136,] 5775000 6000 3 2 4 0
## [137,] 5740000 5400 4 2 2 2
## [138,] 5740000 4640 4 1 2 1
## [139,] 5740000 5000 3 1 3 0
## [140,] 5740000 6360 3 1 1 2
## [141,] 5740000 5800 3 2 4 0
## [142,] 5652500 6660 4 2 2 1
## [143,] 5600000 10500 4 2 2 1
## [144,] 5600000 4800 5 2 3 0
## [145,] 5600000 4700 4 1 2 1
## [146,] 5600000 5000 3 1 4 0
## [147,] 5600000 10500 2 1 1 1
## [148,] 5600000 5500 3 2 2 1
## [149,] 5600000 6360 3 1 3 0
## [150,] 5600000 6600 4 2 1 0
## [151,] 5600000 5136 3 1 2 0
## [152,] 5565000 4400 4 1 2 2
## [153,] 5565000 5400 5 1 2 0
## [154,] 5530000 3300 3 3 2 0
## [155,] 5530000 3650 3 2 2 2
## [156,] 5530000 6100 3 2 1 2
## [157,] 5523000 6900 3 1 1 0
## [158,] 5495000 2817 4 2 2 1
## [159,] 5495000 7980 3 1 1 2
## [160,] 5460000 3150 3 2 1 0
## [161,] 5460000 6210 4 1 4 0
## [162,] 5460000 6100 3 1 3 0
## [163,] 5460000 6600 4 2 2 0
## [164,] 5425000 6825 3 1 1 0
## [165,] 5390000 6710 3 2 2 1
## [166,] 5383000 6450 3 2 1 0
## [167,] 5320000 7800 3 1 1 2
## [168,] 5285000 4600 2 2 1 2
## [169,] 5250000 4260 4 1 2 0
## [170,] 5250000 6540 4 2 2 0
## [171,] 5250000 5500 3 2 1 0
## [172,] 5250000 10269 3 1 1 1
## [173,] 5250000 8400 3 1 2 2
## [174,] 5250000 5300 4 2 1 0
## [175,] 5250000 3800 3 1 2 1
## [176,] 5250000 9800 4 2 2 2
## [177,] 5250000 8520 3 1 1 2
## [178,] 5243000 6050 3 1 1 0
## [179,] 5229000 7085 3 1 1 2
## [180,] 5215000 3180 3 2 2 2
## [181,] 5215000 4500 4 2 1 2
## [182,] 5215000 7200 3 1 2 1
## [183,] 5145000 3410 3 1 2 0
## [184,] 5145000 7980 3 1 1 1
## [185,] 5110000 3000 3 2 2 0
## [186,] 5110000 3000 3 1 2 0
## [187,] 5110000 11410 2 1 2 0
## [188,] 5110000 6100 3 1 1 0
## [189,] 5075000 5720 2 1 2 0
## [190,] 5040000 3540 2 1 1 0
## [191,] 5040000 7600 4 1 2 2
## [192,] 5040000 10700 3 1 2 0
## [193,] 5040000 6600 3 1 1 0
## [194,] 5033000 4800 2 1 1 0
## [195,] 5005000 8150 3 2 1 0
## [196,] 4970000 4410 4 3 2 2
## [197,] 4970000 7686 3 1 1 0
## [198,] 4956000 2800 3 2 2 1
## [199,] 4935000 5948 3 1 2 0
## [200,] 4907000 4200 3 1 2 1
## [201,] 4900000 4520 3 1 2 0
## [202,] 4900000 4095 3 1 2 0
## [203,] 4900000 4120 2 1 1 1
## [204,] 4900000 5400 4 1 2 0
## [205,] 4900000 4770 3 1 1 0
## [206,] 4900000 6300 3 1 1 2
## [207,] 4900000 5800 2 1 1 0
## [208,] 4900000 3000 3 1 2 0
## [209,] 4900000 2970 3 1 3 0
## [210,] 4900000 6720 3 1 1 0
## [211,] 4900000 4646 3 1 2 2
## [212,] 4900000 12900 3 1 1 2
## [213,] 4893000 3420 4 2 2 2
## [214,] 4893000 4995 4 2 1 0
## [215,] 4865000 4350 2 1 1 0
## [216,] 4830000 4160 3 1 3 0
## [217,] 4830000 6040 3 1 1 2
## [218,] 4830000 6862 3 1 2 2
## [219,] 4830000 4815 2 1 1 0
## [220,] 4795000 7000 3 1 2 0
## [221,] 4795000 8100 4 1 4 2
## [222,] 4767000 3420 4 2 2 0
## [223,] 4760000 9166 2 1 1 2
## [224,] 4760000 6321 3 1 2 1
## [225,] 4760000 10240 2 1 1 2
## [226,] 4753000 6440 2 1 1 3
## [227,] 4690000 5170 3 1 4 0
## [228,] 4690000 6000 2 1 1 1
## [229,] 4690000 3630 3 1 2 2
## [230,] 4690000 9667 4 2 2 1
## [231,] 4690000 5400 2 1 2 0
## [232,] 4690000 4320 3 1 1 0
## [233,] 4655000 3745 3 1 2 0
## [234,] 4620000 4160 3 1 1 0
## [235,] 4620000 3880 3 2 2 2
## [236,] 4620000 5680 3 1 2 1
## [237,] 4620000 2870 2 1 2 0
## [238,] 4620000 5010 3 1 2 0
## [239,] 4613000 4510 4 2 2 0
## [240,] 4585000 4000 3 1 2 1
## [241,] 4585000 3840 3 1 2 1
## [242,] 4550000 3760 3 1 1 2
## [243,] 4550000 3640 3 1 2 0
## [244,] 4550000 2550 3 1 2 0
## [245,] 4550000 5320 3 1 2 0
## [246,] 4550000 5360 3 1 2 2
## [247,] 4550000 3520 3 1 1 0
## [248,] 4550000 8400 4 1 4 3
## [249,] 4543000 4100 2 2 1 0
## [250,] 4543000 4990 4 2 2 0
## [251,] 4515000 3510 3 1 3 0
## [252,] 4515000 3450 3 1 2 1
## [253,] 4515000 9860 3 1 1 0
## [254,] 4515000 3520 2 1 2 0
## [255,] 4480000 4510 4 1 2 2
## [256,] 4480000 5885 2 1 1 1
## [257,] 4480000 4000 3 1 2 2
## [258,] 4480000 8250 3 1 1 0
## [259,] 4480000 4040 3 1 2 1
## [260,] 4473000 6360 2 1 1 1
## [261,] 4473000 3162 3 1 2 1
## [262,] 4473000 3510 3 1 2 0
## [263,] 4445000 3750 2 1 1 0
## [264,] 4410000 3968 3 1 2 0
## [265,] 4410000 4900 2 1 2 0
## [266,] 4403000 2880 3 1 2 0
## [267,] 4403000 4880 3 1 1 2
## [268,] 4403000 4920 3 1 2 1
## [269,] 4382000 4950 4 1 2 0
## [270,] 4375000 3900 3 1 2 0
## [271,] 4340000 4500 3 2 3 1
## [272,] 4340000 1905 5 1 2 0
## [273,] 4340000 4075 3 1 1 2
## [274,] 4340000 3500 4 1 2 2
## [275,] 4340000 6450 4 1 2 0
## [276,] 4319000 4032 2 1 1 0
## [277,] 4305000 4400 2 1 1 1
## [278,] 4305000 10360 2 1 1 1
## [279,] 4277000 3400 3 1 2 2
## [280,] 4270000 6360 2 1 1 0
## [281,] 4270000 6360 2 1 2 0
## [282,] 4270000 4500 2 1 1 2
## [283,] 4270000 2175 3 1 2 0
## [284,] 4270000 4360 4 1 2 0
## [285,] 4270000 7770 2 1 1 1
## [286,] 4235000 6650 3 1 2 0
## [287,] 4235000 2787 3 1 1 0
## [288,] 4200000 5500 3 1 2 0
## [289,] 4200000 5040 3 1 2 0
## [290,] 4200000 5850 2 1 1 2
## [291,] 4200000 2610 4 3 2 0
## [292,] 4200000 2953 3 1 2 0
## [293,] 4200000 2747 4 2 2 0
## [294,] 4200000 4410 2 1 1 1
## [295,] 4200000 4000 4 2 2 0
## [296,] 4200000 2325 3 1 2 0
## [297,] 4200000 4600 3 2 2 1
## [298,] 4200000 3640 3 2 2 0
## [299,] 4200000 5800 3 1 1 2
## [300,] 4200000 7000 3 1 1 3
## [301,] 4200000 4079 3 1 3 0
## [302,] 4200000 3520 3 1 2 0
## [303,] 4200000 2145 3 1 3 1
## [304,] 4200000 4500 3 1 1 0
## [305,] 4193000 8250 3 1 1 3
## [306,] 4193000 3450 3 1 2 1
## [307,] 4165000 4840 3 1 2 1
## [308,] 4165000 4080 3 1 2 2
## [309,] 4165000 4046 3 1 2 1
## [310,] 4130000 4632 4 1 2 0
## [311,] 4130000 5985 3 1 1 0
## [312,] 4123000 6060 2 1 1 1
## [313,] 4098500 3600 3 1 1 0
## [314,] 4095000 3680 3 2 2 0
## [315,] 4095000 4040 2 1 2 1
## [316,] 4095000 5600 2 1 1 0
## [317,] 4060000 5900 4 2 2 1
## [318,] 4060000 4992 3 2 2 2
## [319,] 4060000 4340 3 1 1 0
## [320,] 4060000 3000 4 1 3 2
## [321,] 4060000 4320 3 1 2 2
## [322,] 4025000 3630 3 2 2 2
## [323,] 4025000 3460 3 2 1 1
## [324,] 4025000 5400 3 1 1 3
## [325,] 4007500 4500 3 1 2 0
## [326,] 4007500 3460 4 1 2 0
## [327,] 3990000 4100 4 1 1 0
## [328,] 3990000 6480 3 1 2 1
## [329,] 3990000 4500 3 2 2 0
## [330,] 3990000 3960 3 1 2 0
## [331,] 3990000 4050 2 1 2 0
## [332,] 3920000 7260 3 2 1 3
## [333,] 3920000 5500 4 1 2 0
## [334,] 3920000 3000 3 1 2 0
## [335,] 3920000 3290 2 1 1 1
## [336,] 3920000 3816 2 1 1 2
## [337,] 3920000 8080 3 1 1 2
## [338,] 3920000 2145 4 2 1 0
## [339,] 3885000 3780 2 1 2 0
## [340,] 3885000 3180 4 2 2 0
## [341,] 3850000 5300 5 2 2 0
## [342,] 3850000 3180 2 2 1 2
## [343,] 3850000 7152 3 1 2 0
## [344,] 3850000 4080 2 1 1 0
## [345,] 3850000 3850 2 1 1 0
## [346,] 3850000 2015 3 1 2 0
## [347,] 3850000 2176 2 1 2 0
## [348,] 3836000 3350 3 1 2 0
## [349,] 3815000 3150 2 2 1 0
## [350,] 3780000 4820 3 1 2 0
## [351,] 3780000 3420 2 1 2 1
## [352,] 3780000 3600 2 1 1 0
## [353,] 3780000 5830 2 1 1 2
## [354,] 3780000 2856 3 1 3 0
## [355,] 3780000 8400 2 1 1 1
## [356,] 3773000 8250 3 1 1 2
## [357,] 3773000 2520 5 2 1 1
## [358,] 3773000 6930 4 1 2 1
## [359,] 3745000 3480 2 1 1 0
## [360,] 3710000 3600 3 1 1 1
## [361,] 3710000 4040 2 1 1 0
## [362,] 3710000 6020 3 1 1 0
## [363,] 3710000 4050 2 1 1 0
## [364,] 3710000 3584 2 1 1 0
## [365,] 3703000 3120 3 1 2 0
## [366,] 3703000 5450 2 1 1 0
## [367,] 3675000 3630 2 1 1 0
## [368,] 3675000 3630 2 1 1 0
## [369,] 3675000 5640 2 1 1 0
## [370,] 3675000 3600 2 1 1 0
## [371,] 3640000 4280 2 1 1 2
## [372,] 3640000 3570 3 1 2 0
## [373,] 3640000 3180 3 1 2 0
## [374,] 3640000 3000 2 1 2 0
## [375,] 3640000 3520 2 2 1 0
## [376,] 3640000 5960 3 1 2 0
## [377,] 3640000 4130 3 2 2 2
## [378,] 3640000 2850 3 2 2 0
## [379,] 3640000 2275 3 1 3 0
## [380,] 3633000 3520 3 1 1 2
## [381,] 3605000 4500 2 1 1 0
## [382,] 3605000 4000 2 1 1 0
## [383,] 3570000 3150 3 1 2 0
## [384,] 3570000 4500 4 2 2 2
## [385,] 3570000 4500 2 1 1 0
## [386,] 3570000 3640 2 1 1 0
## [387,] 3535000 3850 3 1 1 2
## [388,] 3500000 4240 3 1 2 0
## [389,] 3500000 3650 3 1 2 0
## [390,] 3500000 4600 4 1 2 0
## [391,] 3500000 2135 3 2 2 0
## [392,] 3500000 3036 3 1 2 0
## [393,] 3500000 3990 3 1 2 0
## [394,] 3500000 7424 3 1 1 0
## [395,] 3500000 3480 3 1 1 0
## [396,] 3500000 3600 6 1 2 1
## [397,] 3500000 3640 2 1 1 1
## [398,] 3500000 5900 2 1 1 1
## [399,] 3500000 3120 3 1 2 1
## [400,] 3500000 7350 2 1 1 1
## [401,] 3500000 3512 2 1 1 1
## [402,] 3500000 9500 3 1 2 3
## [403,] 3500000 5880 2 1 1 0
## [404,] 3500000 12944 3 1 1 0
## [405,] 3493000 4900 3 1 2 0
## [406,] 3465000 3060 3 1 1 0
## [407,] 3465000 5320 2 1 1 1
## [408,] 3465000 2145 3 1 3 0
## [409,] 3430000 4000 2 1 1 0
## [410,] 3430000 3185 2 1 1 2
## [411,] 3430000 3850 3 1 1 0
## [412,] 3430000 2145 3 1 3 0
## [413,] 3430000 2610 3 1 2 0
## [414,] 3430000 1950 3 2 2 0
## [415,] 3423000 4040 2 1 1 0
## [416,] 3395000 4785 3 1 2 1
## [417,] 3395000 3450 3 1 1 2
## [418,] 3395000 3640 2 1 1 0
## [419,] 3360000 3500 4 1 2 2
## [420,] 3360000 4960 4 1 3 0
## [421,] 3360000 4120 2 1 2 0
## [422,] 3360000 4750 2 1 1 0
## [423,] 3360000 3720 2 1 1 0
## [424,] 3360000 3750 3 1 1 0
## [425,] 3360000 3100 3 1 2 0
## [426,] 3360000 3185 2 1 1 2
## [427,] 3353000 2700 3 1 1 0
## [428,] 3332000 2145 3 1 2 0
## [429,] 3325000 4040 2 1 1 1
## [430,] 3325000 4775 4 1 2 0
## [431,] 3290000 2500 2 1 1 0
## [432,] 3290000 3180 4 1 2 0
## [433,] 3290000 6060 3 1 1 0
## [434,] 3290000 3480 4 1 2 1
## [435,] 3290000 3792 4 1 2 0
## [436,] 3290000 4040 2 1 1 0
## [437,] 3290000 2145 3 1 2 0
## [438,] 3290000 5880 3 1 1 1
## [439,] 3255000 4500 2 1 1 0
## [440,] 3255000 3930 2 1 1 0
## [441,] 3234000 3640 4 1 2 0
## [442,] 3220000 4370 3 1 2 0
## [443,] 3220000 2684 2 1 1 1
## [444,] 3220000 4320 3 1 1 1
## [445,] 3220000 3120 3 1 2 0
## [446,] 3150000 3450 1 1 1 0
## [447,] 3150000 3986 2 2 1 1
## [448,] 3150000 3500 2 1 1 0
## [449,] 3150000 4095 2 1 1 2
## [450,] 3150000 1650 3 1 2 0
## [451,] 3150000 3450 3 1 2 0
## [452,] 3150000 6750 2 1 1 0
## [453,] 3150000 9000 3 1 2 2
## [454,] 3150000 3069 2 1 1 1
## [455,] 3143000 4500 3 1 2 0
## [456,] 3129000 5495 3 1 1 0
## [457,] 3118850 2398 3 1 1 0
## [458,] 3115000 3000 3 1 1 0
## [459,] 3115000 3850 3 1 2 0
## [460,] 3115000 3500 2 1 1 0
## [461,] 3087000 8100 2 1 1 1
## [462,] 3080000 4960 2 1 1 0
## [463,] 3080000 2160 3 1 2 0
## [464,] 3080000 3090 2 1 1 0
## [465,] 3080000 4500 2 1 2 1
## [466,] 3045000 3800 2 1 1 0
## [467,] 3010000 3090 3 1 2 0
## [468,] 3010000 3240 3 1 2 2
## [469,] 3010000 2835 2 1 1 0
## [470,] 3010000 4600 2 1 1 0
## [471,] 3010000 5076 3 1 1 0
## [472,] 3010000 3750 3 1 2 0
## [473,] 3010000 3630 4 1 2 3
## [474,] 3003000 8050 2 1 1 0
## [475,] 2975000 4352 4 1 2 1
## [476,] 2961000 3000 2 1 2 0
## [477,] 2940000 5850 3 1 2 1
## [478,] 2940000 4960 2 1 1 0
## [479,] 2940000 3600 3 1 2 1
## [480,] 2940000 3660 4 1 2 0
## [481,] 2940000 3480 3 1 2 1
## [482,] 2940000 2700 2 1 1 0
## [483,] 2940000 3150 3 1 2 0
## [484,] 2940000 6615 3 1 2 0
## [485,] 2870000 3040 2 1 1 0
## [486,] 2870000 3630 2 1 1 0
## [487,] 2870000 6000 2 1 1 0
## [488,] 2870000 5400 4 1 2 0
## [489,] 2852500 5200 4 1 3 0
## [490,] 2835000 3300 3 1 2 1
## [491,] 2835000 4350 3 1 2 1
## [492,] 2835000 2640 2 1 1 1
## [493,] 2800000 2650 3 1 2 1
## [494,] 2800000 3960 3 1 1 0
## [495,] 2730000 6800 2 1 1 0
## [496,] 2730000 4000 3 1 2 1
## [497,] 2695000 4000 2 1 1 0
## [498,] 2660000 3934 2 1 1 0
## [499,] 2660000 2000 2 1 2 0
## [500,] 2660000 3630 3 3 2 0
## [501,] 2660000 2800 3 1 1 0
## [502,] 2660000 2430 3 1 1 0
## [503,] 2660000 3480 2 1 1 1
## [504,] 2660000 4000 3 1 1 0
## [505,] 2653000 3185 2 1 1 0
## [506,] 2653000 4000 3 1 2 0
## [507,] 2604000 2910 2 1 1 0
## [508,] 2590000 3600 2 1 1 0
## [509,] 2590000 4400 2 1 1 0
## [510,] 2590000 3600 2 2 2 1
## [511,] 2520000 2880 3 1 1 0
## [512,] 2520000 3180 3 1 1 0
## [513,] 2520000 3000 2 1 2 0
## [514,] 2485000 4400 3 1 2 0
## [515,] 2485000 3000 3 1 2 0
## [516,] 2450000 3210 3 1 2 0
## [517,] 2450000 3240 2 1 1 1
## [518,] 2450000 3000 2 1 1 1
## [519,] 2450000 3500 2 1 1 0
## [520,] 2450000 4840 2 1 2 0
## [521,] 2450000 7700 2 1 1 0
## [522,] 2408000 3635 2 1 1 0
## [523,] 2380000 2475 3 1 2 0
## [524,] 2380000 2787 4 2 2 0
## [525,] 2380000 3264 2 1 1 0
## [526,] 2345000 3640 2 1 1 0
## [527,] 2310000 3180 2 1 1 0
## [528,] 2275000 1836 2 1 1 0
## [529,] 2275000 3970 1 1 1 0
## [530,] 2275000 3970 3 1 2 0
## [531,] 2240000 1950 3 1 1 0
## [532,] 2233000 5300 3 1 1 0
## [533,] 2135000 3000 2 1 1 0
## [534,] 2100000 2400 3 1 2 0
## [535,] 2100000 3000 4 1 2 0
## [536,] 2100000 3360 2 1 1 1
## [537,] 1960000 3420 5 1 2 0
## [538,] 1890000 1700 3 1 2 0
## [539,] 1890000 3649 2 1 1 0
## [540,] 1855000 2990 2 1 1 1
## [541,] 1820000 3000 2 1 1 2
## [542,] 1767150 2400 3 1 1 0
## [543,] 1750000 3620 2 1 1 0
## [544,] 1750000 2910 3 1 1 0
## [545,] 1750000 3850 3 1 2 0
# Menghitung kovarians untuk mencari eigenvalues dan eigenvectors
eigen_kovarian <- eigen(cov(housing_matrix))
# Menampilkan hasil Eigenvalues dan Eigenvectors
print("eigen values")
## [1] "eigen values"
print(eigen_kovarian$values)
## [1] 3.498546e+12 3.356500e+06 7.345801e-01 5.958731e-01 3.626262e-01
## [6] 1.677009e-01
print("eigen vectors")
## [1] "eigen vectors"
print(eigen_kovarian$vectors)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 9.999998e-01 6.218809e-04 2.350022e-07 2.360030e-07 -1.896406e-08
## [2,] 6.218809e-04 -9.999998e-01 -1.068146e-04 4.693651e-05 1.227917e-05
## [3,] 1.446162e-07 2.127405e-05 -4.831235e-01 -3.524835e-01 -7.742078e-01
## [4,] 1.390319e-07 2.715391e-05 -1.156247e-01 -7.418855e-02 -1.559105e-01
## [5,] 1.951224e-07 7.936672e-05 -7.760615e-01 -2.230034e-01 5.897316e-01
## [6,] 1.770643e-07 -8.185750e-05 3.885243e-01 -9.058261e-01 1.688515e-01
## [,6]
## [1,] 1.167426e-07
## [2,] -2.065080e-05
## [3,] 2.072422e-01
## [4,] -9.781712e-01
## [5,] 1.465063e-02
## [6,] -4.137110e-03
cov_matrix <- cov(housing_matrix)
print(cov_matrix)
## price area bedrooms bathrooms stories
## price 3.498544e+12 2.175676e+09 5.059464e+05 4.864093e+05 6.826446e+05
## area 2.175676e+09 4.709512e+06 2.432321e+02 2.113466e+02 1.581294e+02
## bedrooms 5.059464e+05 2.432321e+02 5.447383e-01 1.386738e-01 2.615893e-01
## bathrooms 4.864093e+05 2.113466e+02 1.386738e-01 2.524757e-01 1.421715e-01
## stories 6.826446e+05 1.581294e+02 2.615893e-01 1.421715e-01 7.525432e-01
## parking 6.194673e+05 6.599897e+02 8.856247e-02 7.684161e-02 3.404277e-02
## parking
## price 6.194673e+05
## area 6.599897e+02
## bedrooms 8.856247e-02
## bathrooms 7.684161e-02
## stories 3.404277e-02
## parking 7.423300e-01
cor_matrix <- cor(housing_matrix)
print(cor_matrix)
## price area bedrooms bathrooms stories parking
## price 1.0000000 0.53599735 0.3664940 0.5175453 0.42071237 0.38439365
## area 0.5359973 1.00000000 0.1518585 0.1938195 0.08399605 0.35298048
## bedrooms 0.3664940 0.15185849 1.0000000 0.3739302 0.40856424 0.13926990
## bathrooms 0.5175453 0.19381953 0.3739302 1.0000000 0.32616471 0.17749582
## stories 0.4207124 0.08399605 0.4085642 0.3261647 1.00000000 0.04554709
## parking 0.3843936 0.35298048 0.1392699 0.1774958 0.04554709 1.00000000
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.