SEM

Teoría

Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.

Ejemplo 1. Holzinger y Swineford (1939)

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° de dos escuelas (Pasteur y Grand-White)

  • sex: Género (1=male, 2=female)
  • x1: Percepción visual
  • x2: Juego de cubos
  • x3: Juego con pastillas/espacial
  • x4: Comprensión de párrafos
  • x5: Completar oraciones
  • x6: Signficado de palabras
  • x7: Sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones entre las habilidades visual (x1,x2,x3), textual (x4,x5,x6) y velocidad (x7,x8,x9) de los adolescentes.

Librerias

library(lavaanPlot)
library(lavaan)
library(readxl)

Importar base de datos

df1 <- HolzingerSwineford1939

Importar base de datos

  1. Regresión (~) Variable que depende de otras
  2. Variables Latentes (=~) no se observa, se infiere
  3. Variables y Covarianzas (~~) Relaciones entre variables altentes y observada (Varianza: Entre si miisma, Covarianza: Entre otras)
  4. Intercepto (~1) Valor esperado cuando las demas variables son cero.

Estructurar el modelo

modelo1 <- ' # Regresiones
             # Variables latentes
             visual =~ x1 + x2 + x3
             textual =~ x4 + x5 + x6
             velocidad =~ x7 + x8 + x9
             # Varianzas y Covarianza
             visual ~~ visual
             textual ~~ textual
             velocidad ~~ velocidad
             visual ~~ textual + velocidad
             textual ~~ velocidad
             # Intercepto
          ' 

Generar Análisis Factorial Confirmatorio (CFA)

cfa1 <- sem(modelo1, data=df1)
summary(cfa1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
lavaanPlot(cfa1, coef=TRUE, cov=TRUE)

Ejercicio 1. Democratizar política e industrialización

Contexto

La base de datos contiene distintas mediciones sobre la demoracia política e industrialización en paises en desarrollo durante 1960 y 1965.

La tabla incluye los siguientes datos:

  • y1: Calificaciones sobre libertad de prensa en 1960
  • y2: Libertad de la oposición politica en 1960
  • y3: Imparcialidad de elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: Calificaciones sobre libertad de prensa en 1965
  • y6: Libertad de la oposición politica en 1965
  • y7: Imparcialidad de elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per cápita en 1960
  • x2: Consumo de energía inanimada per cápita en 1960
  • x3: Porcentaje de la fuerza laboral en la industria en 1960

Importar base de datos

df2 <- PoliticalDemocracy

2. Entender la base de datos

summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...
head(df2)
##      y1       y2       y3       y4       y5       y6       y7       y8       x1
## 1  2.50 0.000000 3.333333 0.000000 1.250000 0.000000 3.726360 3.333333 4.442651
## 2  1.25 0.000000 3.333333 0.000000 6.250000 1.100000 6.666666 0.736999 5.384495
## 3  7.50 8.800000 9.999998 9.199991 8.750000 8.094061 9.999998 8.211809 5.961005
## 4  8.90 8.800000 9.999998 9.199991 8.907948 8.127979 9.999998 4.615086 6.285998
## 5 10.00 3.333333 9.999998 6.666666 7.500000 3.333333 9.999998 6.666666 5.863631
## 6  7.50 3.333333 6.666666 6.666666 6.250000 1.100000 6.666666 0.368500 5.533389
##         x2       x3
## 1 3.637586 2.557615
## 2 5.062595 3.568079
## 3 6.255750 5.224433
## 4 7.567863 6.267495
## 5 6.818924 4.573679
## 6 5.135798 3.892270

3. Estructurar el modelo

modelo2 <- '
  # Definir variables latentes de democratización en 1960 y 1965
  Dem1960 =~ y1 + y2 + y3 + y4
  Dem1965 =~ y5 + y6 + y7 + y8

  # Definir variable latente de industrialización
  Ind1960 =~ x1 + x2 + x3

  # Relacionar democratización de 1960 con 1965
  Dem1965 ~ Dem1960

  # Relacionar industrialización con democratización
  Dem1960 ~ Ind1960
  Dem1965 ~ Ind1960

  # Especificar varianzas y covarianzas
  Dem1960 ~~ Dem1960
  Dem1965 ~~ Dem1965
  Ind1960 ~~ Ind1960
  Dem1960 ~~ Ind1960
  Dem1965 ~~ Ind1960
  '

4. Generar el análisis factorial confirmatorio (CFA)

cfa2 <- sem(modelo2, data=df2, se="bootstrap")
## Warning: lavaan->lav_model_nvcov_bootstrap():  
##    400 bootstrap runs resulted in nonadmissible solutions.
summary(cfa2, standardized=TRUE, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        27
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.001
## 
## Model Test Baseline Model:
## 
##   Test statistic                               730.654
##   Degrees of freedom                                55
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.950
##   Tucker-Lewis Index (TLI)                       0.930
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1564.959
##   Loglikelihood unrestricted model (H1)      -1528.728
##                                                       
##   Akaike (AIC)                                3183.918
##   Bayesian (BIC)                              3246.490
##   Sample-size adjusted Bayesian (SABIC)       3161.394
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.107
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.145
##   P-value H_0: RMSEA <= 0.050                    0.013
##   P-value H_0: RMSEA >= 0.080                    0.880
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Dem1960 =~                                                            
##     y1                1.000                               2.201    0.845
##     y2                1.354    0.171    7.905    0.000    2.980    0.760
##     y3                1.044    0.137    7.597    0.000    2.298    0.705
##     y4                1.300    0.145    8.974    0.000    2.860    0.860
##   Dem1965 =~                                                            
##     y5                1.000                               2.084    0.803
##     y6                1.258    0.216    5.814    0.000    2.623    0.783
##     y7                1.282    0.172    7.459    0.000    2.673    0.819
##     y8                1.310    0.201    6.529    0.000    2.730    0.847
##   Ind1960 =~                                                            
##     x1                1.000                               0.669    0.920
##     x2                2.182    0.149   14.621    0.000    1.461    0.973
##     x3                1.819    0.141   12.916    0.000    1.218    0.872
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Dem1965 ~                                                             
##     Dem1960           0.873    0.086   10.148    0.000    0.922    0.922
##   Dem1960 ~                                                             
##     Ind1960           1.565    0.119   13.144    0.000    0.476    0.476
##   Dem1965 ~                                                             
##     Ind1960           1.268    0.179    7.091    0.000    0.407    0.407
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Dem1960 ~~                                                            
##     Ind1960          -0.041    0.097   -0.423    0.672   -0.031   -0.031
##  .Dem1965 ~~                                                            
##     Ind1960          -0.371    0.089   -4.148    0.000   -0.853   -0.853
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Dem1960           3.875    0.835    4.639    0.000    0.800    0.800
##    .Dem1965           0.422    0.154    2.735    0.006    0.097    0.097
##     Ind1960           0.448    0.076    5.906    0.000    1.000    1.000
##    .y1                1.942    0.398    4.881    0.000    1.942    0.286
##    .y2                6.490    1.362    4.765    0.000    6.490    0.422
##    .y3                5.340    1.075    4.968    0.000    5.340    0.503
##    .y4                2.887    0.597    4.833    0.000    2.887    0.261
##    .y5                2.390    0.574    4.164    0.000    2.390    0.355
##    .y6                4.343    0.915    4.748    0.000    4.343    0.387
##    .y7                3.510    0.595    5.896    0.000    3.510    0.329
##    .y8                2.940    0.815    3.607    0.000    2.940    0.283
##    .x1                0.082    0.019    4.278    0.000    0.082    0.154
##    .x2                0.118    0.072    1.641    0.101    0.118    0.053
##    .x3                0.467    0.083    5.655    0.000    0.467    0.240
lavaanPlot(cfa2, coef=TRUE, cov=TRUE)

Activdad 3: Aplicación de modelos de ecuaciones estructurales

Entender la base de datos

df3 <- read_excel("/Users/genarorodriguezalcantara/Desktop/Tec/Generacion de escenarios futuros con analítica (Gpo 101)/PIB/M1 - Actividad 3/Datos_SEM_Eng.xlsx")
summary(df3)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
head(df3)
## # A tibble: 6 × 51
##      ID   GEN EXPER  EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     1     1    22    45     5     1     3     2     3     1     3     2     4
## 2     2     1    22    44     4     4     6     5     3     2     3     4     4
## 3     3     1    30    52     7     7     7     7     7     6     7     7     7
## 4     4     1    17    41     5     5     1     1     3     5     3     2     2
## 5     5     1    23    51     7     6     7     6     7     6     7     6     6
## 6     6     0    31    52     3     4     5     4     3     5     4     4     4
## # ℹ 38 more variables: RRE02 <dbl>, RRE03 <dbl>, RRE04 <dbl>, RRE05 <dbl>,
## #   RRE06 <dbl>, RRE07 <dbl>, RRE10 <dbl>, RMA02 <dbl>, RMA03 <dbl>,
## #   RMA04 <dbl>, RMA05 <dbl>, RMA06 <dbl>, RMA07 <dbl>, RMA08 <dbl>,
## #   RMA09 <dbl>, RMA10 <dbl>, RCO02 <dbl>, RCO03 <dbl>, RCO04 <dbl>,
## #   RCO05 <dbl>, RCO06 <dbl>, RCO07 <dbl>, EN01 <dbl>, EN02 <dbl>, EN04 <dbl>,
## #   EN05 <dbl>, EN06 <dbl>, EN07 <dbl>, EN08 <dbl>, EVI01 <dbl>, EVI02 <dbl>,
## #   EVI03 <dbl>, EDE01 <dbl>, EDE02 <dbl>, EDE03 <dbl>, EAB01 <dbl>, …

Parte 1. Experiencias de Recuperación

modelo3_1 <- ' # Regresiones
             # Variables latentes
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
             relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
             dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             recuperacion =~ desapego + relajacion + dominio + control
             # Varianzas y Covarianza
             desapego ~~ desapego
             relajacion ~~ relajacion
             dominio ~~ dominio
             control ~~ control
             # Intercepto
          ' 

Generar el análisis factorial confirmatorio (CFA)

cfa3_1 <- sem(modelo3_1, data=df3)
summary(cfa3_1, standardized=TRUE, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7522.157
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.888
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10616.148
##   Loglikelihood unrestricted model (H1)     -10005.632
##                                                       
##   Akaike (AIC)                               21364.296
##   Bayesian (BIC)                             21589.169
##   Sample-size adjusted Bayesian (SABIC)      21380.007
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.097
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.998
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   desapego =~                                                           
##     RPD01             1.000                               1.386    0.788
##     RPD02             1.206    0.082   14.780    0.000    1.672    0.858
##     RPD03             1.143    0.085   13.374    0.000    1.584    0.797
##     RPD05             1.312    0.086   15.244    0.000    1.818    0.878
##     RPD06             1.088    0.089   12.266    0.000    1.507    0.745
##     RPD07             1.229    0.085   14.440    0.000    1.703    0.844
##     RPD08             1.164    0.087   13.447    0.000    1.613    0.800
##     RPD09             1.317    0.087   15.153    0.000    1.826    0.874
##     RPD10             1.346    0.088   15.258    0.000    1.866    0.878
##   relajacion =~                                                         
##     RRE02             1.000                               1.274    0.849
##     RRE03             1.120    0.065   17.227    0.000    1.427    0.870
##     RRE04             1.025    0.058   17.713    0.000    1.306    0.883
##     RRE05             1.055    0.056   18.758    0.000    1.344    0.910
##     RRE06             1.245    0.074   16.869    0.000    1.586    0.860
##     RRE07             1.117    0.071   15.689    0.000    1.423    0.825
##     RRE10             0.815    0.067   12.120    0.000    1.038    0.698
##   dominio =~                                                            
##     RMA02             1.000                               1.407    0.730
##     RMA03             1.155    0.096   12.079    0.000    1.626    0.800
##     RMA04             1.178    0.089   13.274    0.000    1.658    0.873
##     RMA05             1.141    0.087   13.072    0.000    1.606    0.861
##     RMA06             0.645    0.075    8.597    0.000    0.908    0.579
##     RMA07             1.103    0.084   13.061    0.000    1.552    0.860
##     RMA08             1.109    0.085   12.994    0.000    1.560    0.856
##     RMA09             1.028    0.084   12.246    0.000    1.447    0.810
##     RMA10             1.055    0.088   12.044    0.000    1.485    0.798
##   control =~                                                            
##     RCO02             1.000                               1.630    0.854
##     RCO03             0.948    0.049   19.182    0.000    1.545    0.912
##     RCO04             0.796    0.044   18.110    0.000    1.297    0.886
##     RCO05             0.818    0.043   18.990    0.000    1.333    0.907
##     RCO06             0.834    0.046   18.216    0.000    1.360    0.888
##     RCO07             0.835    0.046   18.057    0.000    1.361    0.884
##   recuperacion =~                                                       
##     desapego          1.000                               0.713    0.713
##     relajacion        1.149    0.131    8.787    0.000    0.892    0.892
##     dominio           0.858    0.129    6.666    0.000    0.603    0.603
##     control           1.341    0.156    8.605    0.000    0.813    0.813
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .desapego          0.943    0.152    6.207    0.000    0.491    0.491
##    .relajacion        0.333    0.089    3.757    0.000    0.205    0.205
##    .dominio           1.260    0.212    5.942    0.000    0.636    0.636
##    .control           0.900    0.159    5.666    0.000    0.339    0.339
##    .RPD01             1.172    0.120    9.782    0.000    1.172    0.379
##    .RPD02             0.999    0.108    9.228    0.000    0.999    0.263
##    .RPD03             1.441    0.148    9.733    0.000    1.441    0.365
##    .RPD05             0.987    0.110    8.964    0.000    0.987    0.230
##    .RPD06             1.817    0.182    9.967    0.000    1.817    0.444
##    .RPD07             1.173    0.125    9.383    0.000    1.173    0.288
##    .RPD08             1.460    0.150    9.714    0.000    1.460    0.360
##    .RPD09             1.032    0.114    9.021    0.000    1.032    0.236
##    .RPD10             1.034    0.115    8.955    0.000    1.034    0.229
##    .RRE02             0.626    0.068    9.274    0.000    0.626    0.278
##    .RRE03             0.653    0.073    9.011    0.000    0.653    0.243
##    .RRE04             0.481    0.055    8.794    0.000    0.481    0.220
##    .RRE05             0.374    0.046    8.153    0.000    0.374    0.172
##    .RRE06             0.886    0.097    9.149    0.000    0.886    0.260
##    .RRE07             0.950    0.100    9.505    0.000    0.950    0.319
##    .RRE10             1.137    0.113   10.093    0.000    1.137    0.513
##    .RMA02             1.740    0.175    9.931    0.000    1.740    0.468
##    .RMA03             1.485    0.155    9.575    0.000    1.485    0.360
##    .RMA04             0.855    0.097    8.772    0.000    0.855    0.237
##    .RMA05             0.899    0.100    8.967    0.000    0.899    0.259
##    .RMA06             1.631    0.159   10.281    0.000    1.631    0.664
##    .RMA07             0.845    0.094    8.977    0.000    0.845    0.260
##    .RMA08             0.886    0.098    9.034    0.000    0.886    0.267
##    .RMA09             1.094    0.115    9.500    0.000    1.094    0.343
##    .RMA10             1.259    0.131    9.590    0.000    1.259    0.363
##    .RCO02             0.983    0.105    9.379    0.000    0.983    0.270
##    .RCO03             0.484    0.058    8.391    0.000    0.484    0.169
##    .RCO04             0.462    0.052    8.963    0.000    0.462    0.215
##    .RCO05             0.382    0.045    8.513    0.000    0.382    0.177
##    .RCO06             0.494    0.055    8.917    0.000    0.494    0.211
##    .RCO07             0.515    0.057    8.985    0.000    0.515    0.218
##     recuperacion      0.978    0.202    4.833    0.000    1.000    1.000
lavaanPlot(cfa3_1, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa3_1, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7522.157
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.888
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10616.148
##   Loglikelihood unrestricted model (H1)     -10005.632
##                                                       
##   Akaike (AIC)                               21364.296
##   Bayesian (BIC)                             21589.169
##   Sample-size adjusted Bayesian (SABIC)      21380.007
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.097
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.998
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##     recuperacion      0.978    0.202    4.833    0.000
# Revisar los valores de comparative Fit Index (CFI) y Tucker-Lewis Ibdex (TLI)
# Eccelente si es >= 0.95, Aceptable enntre 0.9 y 0-95, Deficiente < 0.90

Parte 2. Energía Recuperada

modelo3_2 <- ' # Regresiones
             # Variables latentes
             energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
             # Varianzas y Covarianza
             energia ~~ energia
             # Intercepto
          ' 

Generar el análisis factorial confirmatorio (CFA)

cfa3_2 <- sem(modelo3_2, data=df3, se="bootstrap")
summary(cfa3_2, standardized=TRUE, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2324.436
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986
##   Tucker-Lewis Index (TLI)                       0.978
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2017.154
##   Loglikelihood unrestricted model (H1)      -1993.543
##                                                       
##   Akaike (AIC)                                4062.308
##   Bayesian (BIC)                              4110.008
##   Sample-size adjusted Bayesian (SABIC)       4065.641
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.103
##   90 Percent confidence interval - lower         0.072
##   90 Percent confidence interval - upper         0.136
##   P-value H_0: RMSEA <= 0.050                    0.004
##   P-value H_0: RMSEA >= 0.080                    0.892
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   energia =~                                                            
##     EN01              1.000                               1.674    0.893
##     EN02              1.029    0.038   27.142    0.000    1.723    0.933
##     EN04              0.999    0.044   22.606    0.000    1.672    0.924
##     EN05              0.999    0.044   22.769    0.000    1.672    0.939
##     EN06              0.986    0.039   25.506    0.000    1.651    0.940
##     EN07              1.049    0.042   24.756    0.000    1.755    0.928
##     EN08              1.036    0.039   26.276    0.000    1.734    0.946
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     energia           2.801    0.269   10.432    0.000    1.000    1.000
##    .EN01              0.711    0.123    5.772    0.000    0.711    0.202
##    .EN02              0.444    0.063    7.048    0.000    0.444    0.130
##    .EN04              0.481    0.112    4.306    0.000    0.481    0.147
##    .EN05              0.375    0.076    4.921    0.000    0.375    0.118
##    .EN06              0.359    0.058    6.137    0.000    0.359    0.116
##    .EN07              0.499    0.105    4.756    0.000    0.499    0.139
##    .EN08              0.353    0.072    4.921    0.000    0.353    0.105
lavaanPlot(cfa3_2, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa3_2, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2324.436
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986
##   Tucker-Lewis Index (TLI)                       0.978
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2017.154
##   Loglikelihood unrestricted model (H1)      -1993.543
##                                                       
##   Akaike (AIC)                                4062.308
##   Bayesian (BIC)                              4110.008
##   Sample-size adjusted Bayesian (SABIC)       4065.641
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.103
##   90 Percent confidence interval - lower         0.072
##   90 Percent confidence interval - upper         0.136
##   P-value H_0: RMSEA <= 0.050                    0.004
##   P-value H_0: RMSEA >= 0.080                    0.892
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.038   27.142    0.000
##     EN04              0.999    0.044   22.606    0.000
##     EN05              0.999    0.044   22.769    0.000
##     EN06              0.986    0.039   25.506    0.000
##     EN07              1.049    0.042   24.756    0.000
##     EN08              1.036    0.039   26.276    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.269   10.432    0.000
##    .EN01              0.711    0.123    5.772    0.000
##    .EN02              0.444    0.063    7.048    0.000
##    .EN04              0.481    0.112    4.306    0.000
##    .EN05              0.375    0.076    4.921    0.000
##    .EN06              0.359    0.058    6.137    0.000
##    .EN07              0.499    0.105    4.756    0.000
##    .EN08              0.353    0.072    4.921    0.000
# Revisar los valores de comparative Fit Inndex (CFI) y Tucker-Lewis Ibdex (TLI)
# Eccelente si es >= 0.95, Aceptable enntre 0.9 y 0-95, Deficiente < 0.90

Parte 3. Analisis de Engagement Laboral

modelo3_3 <- ' # Regresiones
             # Variables latentes
             vigor =~ EVI01 + EVI02 + EVI03
             dedicacion =~ EDE01 + EDE02 + EDE03
             absorcion =~ EAB01 + EAB02 + EAB03
             # Varianzas y Covarianza
             vigor ~~ vigor
             dedicacion ~~ dedicacion
             vigor ~~ absorcion + dedicacion
             dedicacion ~~ absorcion
             # Intercepto
          ' 

Generar el análisis factorial confirmatorio (CFA)

cfa3_3 <- sem(modelo3_3, data=df3, se="bootstrap")
## Warning: lavaan->lav_model_nvcov_bootstrap():  
##    12 bootstrap runs resulted in nonadmissible solutions.
summary(cfa3_3, standardized=TRUE, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2254.214
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.889
##   Tucker-Lewis Index (TLI)                       0.833
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2965.082
##   Loglikelihood unrestricted model (H1)      -2829.498
##                                                       
##   Akaike (AIC)                                5972.164
##   Bayesian (BIC)                              6043.715
##   Sample-size adjusted Bayesian (SABIC)       5977.163
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.215
##   90 Percent confidence interval - lower         0.192
##   90 Percent confidence interval - upper         0.238
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   vigor =~                                                              
##     EVI01             1.000                               1.684    0.967
##     EVI02             0.986    0.027   36.089    0.000    1.660    0.962
##     EVI03             0.995    0.054   18.552    0.000    1.675    0.835
##   dedicacion =~                                                         
##     EDE01             1.000                               1.857    0.946
##     EDE02             0.914    0.044   20.898    0.000    1.698    0.924
##     EDE03             0.583    0.080    7.287    0.000    1.082    0.765
##   absorcion =~                                                          
##     EAB01             1.000                               1.610    0.918
##     EAB02             0.708    0.102    6.961    0.000    1.140    0.750
##     EAB03             0.732    0.104    7.011    0.000    1.179    0.669
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   vigor ~~                                                              
##     absorcion         2.125    0.340    6.248    0.000    0.784    0.784
##     dedicacion        2.754    0.351    7.839    0.000    0.881    0.881
##   dedicacion ~~                                                         
##     absorcion         2.728    0.391    6.969    0.000    0.913    0.913
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     vigor             2.836    0.328    8.654    0.000    1.000    1.000
##     dedicacion        3.448    0.435    7.928    0.000    1.000    1.000
##    .EVI01             0.200    0.054    3.692    0.000    0.200    0.066
##    .EVI02             0.220    0.051    4.342    0.000    0.220    0.074
##    .EVI03             1.220    0.224    5.448    0.000    1.220    0.303
##    .EDE01             0.405    0.113    3.569    0.000    0.405    0.105
##    .EDE02             0.495    0.114    4.324    0.000    0.495    0.146
##    .EDE03             0.829    0.148    5.583    0.000    0.829    0.415
##    .EAB01             0.481    0.168    2.860    0.004    0.481    0.157
##    .EAB02             1.010    0.201    5.035    0.000    1.010    0.437
##    .EAB03             1.711    0.357    4.798    0.000    1.711    0.552
##     absorcion         2.592    0.412    6.292    0.000    1.000    1.000
lavaanPlot(cfa3_3, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa3_3, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2254.214
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.889
##   Tucker-Lewis Index (TLI)                       0.833
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2965.082
##   Loglikelihood unrestricted model (H1)      -2829.498
##                                                       
##   Akaike (AIC)                                5972.164
##   Bayesian (BIC)                              6043.715
##   Sample-size adjusted Bayesian (SABIC)       5977.163
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.215
##   90 Percent confidence interval - lower         0.192
##   90 Percent confidence interval - upper         0.238
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.027   36.089    0.000
##     EVI03             0.995    0.054   18.552    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.044   20.898    0.000
##     EDE03             0.583    0.080    7.287    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.102    6.961    0.000
##     EAB03             0.732    0.104    7.011    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     absorcion         2.125    0.340    6.248    0.000
##     dedicacion        2.754    0.351    7.839    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.391    6.969    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.328    8.654    0.000
##     dedicacion        3.448    0.435    7.928    0.000
##    .EVI01             0.200    0.054    3.692    0.000
##    .EVI02             0.220    0.051    4.342    0.000
##    .EVI03             1.220    0.224    5.448    0.000
##    .EDE01             0.405    0.113    3.569    0.000
##    .EDE02             0.495    0.114    4.324    0.000
##    .EDE03             0.829    0.148    5.583    0.000
##    .EAB01             0.481    0.168    2.860    0.004
##    .EAB02             1.010    0.201    5.035    0.000
##    .EAB03             1.711    0.357    4.798    0.000
##     absorcion         2.592    0.412    6.292    0.000
# Revisar los valores de comparative Fit Inndex (CFI) y Tucker-Lewis Ibdex (TLI)
# Eccelente si es >= 0.95, Aceptable enntre 0.9 y 0-95, Deficiente < 0.90

Parte 4. Analisis de Engagement Laboral

modelo3_4 <- ' # Regresiones
             # Variables latentes
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
             relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
             dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             recuperacion =~ desapego + relajacion + dominio + control
             energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08 
             vigor =~ EVI01 + EVI02 + EVI03
             dedicacion =~ EDE01 + EDE02 + EDE03
             absorcion =~ EAB01 + EAB02 + EAB03
             # Varianzas y Covarianza
             desapego ~~ desapego
             relajacion ~~ relajacion
             dominio ~~ dominio
             control ~~ control
             energia ~~ energia
             vigor ~~ vigor
             dedicacion ~~ dedicacion
             vigor ~~ absorcion + dedicacion
             dedicacion ~~ absorcion
             recuperacion ~~ absorcion + dedicacion + energia + vigor
             energia ~~ vigor + dedicacion + absorcion
             # Intercepto
          ' 

Generar el análisis factorial confirmatorio (CFA)

cfa3_4 <- sem(modelo3_4, data=df3, se="bootstrap")
## Warning: lavaan->lav_model_nvcov_bootstrap():  
##    14 bootstrap runs resulted in nonadmissible solutions.
summary(cfa3_4, standardized=TRUE, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1020
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13350.303
##   Degrees of freedom                              1081
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.877
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -15426.580
##   Loglikelihood unrestricted model (H1)     -14203.926
##                                                       
##   Akaike (AIC)                               31069.161
##   Bayesian (BIC)                             31437.135
##   Sample-size adjusted Bayesian (SABIC)      31094.870
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.369
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   desapego =~                                                           
##     RPD01             1.000                               1.387    0.789
##     RPD02             1.209    0.077   15.651    0.000    1.677    0.861
##     RPD03             1.144    0.072   15.943    0.000    1.586    0.798
##     RPD05             1.313    0.084   15.704    0.000    1.822    0.879
##     RPD06             1.083    0.102   10.598    0.000    1.502    0.743
##     RPD07             1.229    0.088   13.963    0.000    1.705    0.845
##     RPD08             1.157    0.103   11.190    0.000    1.605    0.796
##     RPD09             1.316    0.101   12.982    0.000    1.825    0.873
##     RPD10             1.343    0.098   13.692    0.000    1.863    0.877
##   relajacion =~                                                         
##     RRE02             1.000                               1.275    0.850
##     RRE03             1.121    0.074   15.133    0.000    1.429    0.872
##     RRE04             1.020    0.065   15.758    0.000    1.301    0.880
##     RRE05             1.051    0.064   16.486    0.000    1.341    0.908
##     RRE06             1.245    0.101   12.285    0.000    1.588    0.861
##     RRE07             1.122    0.088   12.722    0.000    1.430    0.829
##     RRE10             0.815    0.090    9.067    0.000    1.039    0.698
##   dominio =~                                                            
##     RMA02             1.000                               1.407    0.729
##     RMA03             1.152    0.072   15.977    0.000    1.621    0.798
##     RMA04             1.178    0.086   13.668    0.000    1.658    0.873
##     RMA05             1.141    0.083   13.769    0.000    1.604    0.860
##     RMA06             0.648    0.095    6.846    0.000    0.911    0.581
##     RMA07             1.104    0.089   12.408    0.000    1.553    0.861
##     RMA08             1.110    0.101   10.979    0.000    1.562    0.857
##     RMA09             1.030    0.099   10.357    0.000    1.449    0.811
##     RMA10             1.056    0.087   12.172    0.000    1.486    0.798
##   control =~                                                            
##     RCO02             1.000                               1.631    0.855
##     RCO03             0.946    0.044   21.268    0.000    1.543    0.910
##     RCO04             0.794    0.055   14.546    0.000    1.295    0.884
##     RCO05             0.815    0.055   14.738    0.000    1.329    0.904
##     RCO06             0.837    0.050   16.816    0.000    1.365    0.892
##     RCO07             0.837    0.053   15.657    0.000    1.365    0.887
##   recuperacion =~                                                       
##     desapego          1.000                               0.711    0.711
##     relajacion        1.071    0.134    8.002    0.000    0.828    0.828
##     dominio           0.900    0.143    6.281    0.000    0.631    0.631
##     control           1.421    0.155    9.180    0.000    0.859    0.859
##   energia =~                                                            
##     EN01              1.000                               1.680    0.897
##     EN02              1.026    0.037   27.614    0.000    1.724    0.934
##     EN04              0.996    0.044   22.709    0.000    1.674    0.924
##     EN05              0.994    0.043   22.955    0.000    1.670    0.938
##     EN06              0.981    0.038   25.734    0.000    1.649    0.939
##     EN07              1.044    0.042   24.919    0.000    1.754    0.927
##     EN08              1.031    0.039   26.320    0.000    1.732    0.945
##   vigor =~                                                              
##     EVI01             1.000                               1.691    0.970
##     EVI02             0.978    0.027   36.567    0.000    1.654    0.959
##     EVI03             0.990    0.053   18.566    0.000    1.675    0.835
##   dedicacion =~                                                         
##     EDE01             1.000                               1.860    0.947
##     EDE02             0.913    0.044   20.694    0.000    1.697    0.923
##     EDE03             0.580    0.081    7.194    0.000    1.079    0.763
##   absorcion =~                                                          
##     EAB01             1.000                               1.611    0.919
##     EAB02             0.707    0.102    6.924    0.000    1.140    0.750
##     EAB03             0.730    0.105    6.968    0.000    1.176    0.668
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   vigor ~~                                                              
##     absorcion         2.132    0.341    6.247    0.000    0.783    0.783
##     dedicacion        2.767    0.350    7.894    0.000    0.880    0.880
##   dedicacion ~~                                                         
##     absorcion         2.731    0.393    6.946    0.000    0.912    0.912
##   recuperacion ~~                                                       
##     absorcion         0.796    0.195    4.074    0.000    0.501    0.501
##     dedicacion        1.049    0.218    4.803    0.000    0.572    0.572
##     energia           1.367    0.197    6.944    0.000    0.825    0.825
##     vigor             1.007    0.185    5.437    0.000    0.604    0.604
##   energia ~~                                                            
##     vigor             2.045    0.255    8.007    0.000    0.720    0.720
##     dedicacion        1.852    0.293    6.319    0.000    0.593    0.593
##     absorcion         1.340    0.276    4.855    0.000    0.495    0.495
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .desapego          0.951    0.162    5.886    0.000    0.495    0.495
##    .relajacion        0.510    0.110    4.621    0.000    0.314    0.314
##    .dominio           1.191    0.224    5.313    0.000    0.602    0.602
##    .control           0.699    0.156    4.484    0.000    0.263    0.263
##     energia           2.823    0.268   10.551    0.000    1.000    1.000
##     vigor             2.859    0.327    8.749    0.000    1.000    1.000
##     dedicacion        3.458    0.434    7.963    0.000    1.000    1.000
##    .RPD01             1.169    0.156    7.501    0.000    1.169    0.378
##    .RPD02             0.984    0.158    6.240    0.000    0.984    0.259
##    .RPD03             1.435    0.214    6.713    0.000    1.435    0.363
##    .RPD05             0.973    0.140    6.949    0.000    0.973    0.227
##    .RPD06             1.835    0.248    7.407    0.000    1.835    0.449
##    .RPD07             1.166    0.175    6.666    0.000    1.166    0.286
##    .RPD08             1.485    0.242    6.141    0.000    1.485    0.366
##    .RPD09             1.036    0.216    4.798    0.000    1.036    0.237
##    .RPD10             1.044    0.199    5.237    0.000    1.044    0.231
##    .RRE02             0.623    0.110    5.677    0.000    0.623    0.277
##    .RRE03             0.646    0.120    5.397    0.000    0.646    0.240
##    .RRE04             0.494    0.129    3.818    0.000    0.494    0.226
##    .RRE05             0.384    0.128    3.009    0.003    0.384    0.176
##    .RRE06             0.882    0.124    7.139    0.000    0.882    0.259
##    .RRE07             0.929    0.236    3.930    0.000    0.929    0.312
##    .RRE10             1.134    0.187    6.050    0.000    1.134    0.512
##    .RMA02             1.742    0.237    7.353    0.000    1.742    0.468
##    .RMA03             1.500    0.272    5.513    0.000    1.500    0.363
##    .RMA04             0.857    0.117    7.322    0.000    0.857    0.238
##    .RMA05             0.904    0.186    4.847    0.000    0.904    0.260
##    .RMA06             1.626    0.180    9.057    0.000    1.626    0.662
##    .RMA07             0.843    0.131    6.433    0.000    0.843    0.259
##    .RMA08             0.881    0.155    5.695    0.000    0.881    0.265
##    .RMA09             1.089    0.183    5.942    0.000    1.089    0.342
##    .RMA10             1.256    0.224    5.601    0.000    1.256    0.363
##    .RCO02             0.980    0.144    6.781    0.000    0.980    0.269
##    .RCO03             0.493    0.106    4.653    0.000    0.493    0.171
##    .RCO04             0.468    0.105    4.459    0.000    0.468    0.218
##    .RCO05             0.393    0.071    5.524    0.000    0.393    0.182
##    .RCO06             0.479    0.109    4.383    0.000    0.479    0.204
##    .RCO07             0.504    0.088    5.719    0.000    0.504    0.213
##    .EN01              0.689    0.120    5.731    0.000    0.689    0.196
##    .EN02              0.439    0.060    7.289    0.000    0.439    0.129
##    .EN04              0.476    0.112    4.240    0.000    0.476    0.145
##    .EN05              0.381    0.077    4.968    0.000    0.381    0.120
##    .EN06              0.367    0.060    6.136    0.000    0.367    0.119
##    .EN07              0.502    0.103    4.878    0.000    0.502    0.140
##    .EN08              0.358    0.072    4.995    0.000    0.358    0.107
##    .EVI01             0.177    0.049    3.626    0.000    0.177    0.058
##    .EVI02             0.242    0.054    4.473    0.000    0.242    0.081
##    .EVI03             1.222    0.221    5.536    0.000    1.222    0.303
##    .EDE01             0.395    0.114    3.482    0.000    0.395    0.103
##    .EDE02             0.498    0.115    4.320    0.000    0.498    0.147
##    .EDE03             0.836    0.151    5.549    0.000    0.836    0.418
##    .EAB01             0.478    0.168    2.837    0.005    0.478    0.155
##    .EAB02             1.010    0.200    5.059    0.000    1.010    0.437
##    .EAB03             1.718    0.358    4.804    0.000    1.718    0.554
##     recuperacion      0.972    0.201    4.847    0.000    1.000    1.000
##     absorcion         2.595    0.412    6.297    0.000    1.000    1.000
lavaanPlot(cfa3_4, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa3_4, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1020
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13350.303
##   Degrees of freedom                              1081
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.877
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -15426.580
##   Loglikelihood unrestricted model (H1)     -14203.926
##                                                       
##   Akaike (AIC)                               31069.161
##   Bayesian (BIC)                             31437.135
##   Sample-size adjusted Bayesian (SABIC)      31094.870
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.369
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.077   15.651    0.000
##     RPD03             1.144    0.072   15.943    0.000
##     RPD05             1.313    0.084   15.704    0.000
##     RPD06             1.083    0.102   10.598    0.000
##     RPD07             1.229    0.088   13.963    0.000
##     RPD08             1.157    0.103   11.190    0.000
##     RPD09             1.316    0.101   12.982    0.000
##     RPD10             1.343    0.098   13.692    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.074   15.133    0.000
##     RRE04             1.020    0.065   15.758    0.000
##     RRE05             1.051    0.064   16.486    0.000
##     RRE06             1.245    0.101   12.285    0.000
##     RRE07             1.122    0.088   12.722    0.000
##     RRE10             0.815    0.090    9.067    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152    0.072   15.977    0.000
##     RMA04             1.178    0.086   13.668    0.000
##     RMA05             1.141    0.083   13.769    0.000
##     RMA06             0.648    0.095    6.846    0.000
##     RMA07             1.104    0.089   12.408    0.000
##     RMA08             1.110    0.101   10.979    0.000
##     RMA09             1.030    0.099   10.357    0.000
##     RMA10             1.056    0.087   12.172    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946    0.044   21.268    0.000
##     RCO04             0.794    0.055   14.546    0.000
##     RCO05             0.815    0.055   14.738    0.000
##     RCO06             0.837    0.050   16.816    0.000
##     RCO07             0.837    0.053   15.657    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.071    0.134    8.002    0.000
##     dominio           0.900    0.143    6.281    0.000
##     control           1.421    0.155    9.180    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.037   27.614    0.000
##     EN04              0.996    0.044   22.709    0.000
##     EN05              0.994    0.043   22.955    0.000
##     EN06              0.981    0.038   25.734    0.000
##     EN07              1.044    0.042   24.919    0.000
##     EN08              1.031    0.039   26.320    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   36.567    0.000
##     EVI03             0.990    0.053   18.566    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913    0.044   20.694    0.000
##     EDE03             0.580    0.081    7.194    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707    0.102    6.924    0.000
##     EAB03             0.730    0.105    6.968    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     absorcion         2.132    0.341    6.247    0.000
##     dedicacion        2.767    0.350    7.894    0.000
##   dedicacion ~~                                       
##     absorcion         2.731    0.393    6.946    0.000
##   recuperacion ~~                                     
##     absorcion         0.796    0.195    4.074    0.000
##     dedicacion        1.049    0.218    4.803    0.000
##     energia           1.367    0.197    6.944    0.000
##     vigor             1.007    0.185    5.437    0.000
##   energia ~~                                          
##     vigor             2.045    0.255    8.007    0.000
##     dedicacion        1.852    0.293    6.319    0.000
##     absorcion         1.340    0.276    4.855    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.951    0.162    5.886    0.000
##    .relajacion        0.510    0.110    4.621    0.000
##    .dominio           1.191    0.224    5.313    0.000
##    .control           0.699    0.156    4.484    0.000
##     energia           2.823    0.268   10.551    0.000
##     vigor             2.859    0.327    8.749    0.000
##     dedicacion        3.458    0.434    7.963    0.000
##    .RPD01             1.169    0.156    7.501    0.000
##    .RPD02             0.984    0.158    6.240    0.000
##    .RPD03             1.435    0.214    6.713    0.000
##    .RPD05             0.973    0.140    6.949    0.000
##    .RPD06             1.835    0.248    7.407    0.000
##    .RPD07             1.166    0.175    6.666    0.000
##    .RPD08             1.485    0.242    6.141    0.000
##    .RPD09             1.036    0.216    4.798    0.000
##    .RPD10             1.044    0.199    5.237    0.000
##    .RRE02             0.623    0.110    5.677    0.000
##    .RRE03             0.646    0.120    5.397    0.000
##    .RRE04             0.494    0.129    3.818    0.000
##    .RRE05             0.384    0.128    3.009    0.003
##    .RRE06             0.882    0.124    7.139    0.000
##    .RRE07             0.929    0.236    3.930    0.000
##    .RRE10             1.134    0.187    6.050    0.000
##    .RMA02             1.742    0.237    7.353    0.000
##    .RMA03             1.500    0.272    5.513    0.000
##    .RMA04             0.857    0.117    7.322    0.000
##    .RMA05             0.904    0.186    4.847    0.000
##    .RMA06             1.626    0.180    9.057    0.000
##    .RMA07             0.843    0.131    6.433    0.000
##    .RMA08             0.881    0.155    5.695    0.000
##    .RMA09             1.089    0.183    5.942    0.000
##    .RMA10             1.256    0.224    5.601    0.000
##    .RCO02             0.980    0.144    6.781    0.000
##    .RCO03             0.493    0.106    4.653    0.000
##    .RCO04             0.468    0.105    4.459    0.000
##    .RCO05             0.393    0.071    5.524    0.000
##    .RCO06             0.479    0.109    4.383    0.000
##    .RCO07             0.504    0.088    5.719    0.000
##    .EN01              0.689    0.120    5.731    0.000
##    .EN02              0.439    0.060    7.289    0.000
##    .EN04              0.476    0.112    4.240    0.000
##    .EN05              0.381    0.077    4.968    0.000
##    .EN06              0.367    0.060    6.136    0.000
##    .EN07              0.502    0.103    4.878    0.000
##    .EN08              0.358    0.072    4.995    0.000
##    .EVI01             0.177    0.049    3.626    0.000
##    .EVI02             0.242    0.054    4.473    0.000
##    .EVI03             1.222    0.221    5.536    0.000
##    .EDE01             0.395    0.114    3.482    0.000
##    .EDE02             0.498    0.115    4.320    0.000
##    .EDE03             0.836    0.151    5.549    0.000
##    .EAB01             0.478    0.168    2.837    0.005
##    .EAB02             1.010    0.200    5.059    0.000
##    .EAB03             1.718    0.358    4.804    0.000
##     recuperacion      0.972    0.201    4.847    0.000
##     absorcion         2.595    0.412    6.297    0.000
# Revisar los valores de comparative Fit Inndex (CFI) y Tucker-Lewis Ibdex (TLI)
# Eccelente si es >= 0.95, Aceptable enntre 0.9 y 0-95, Deficiente < 0.90

Conclusión General

Los resultados obtenidos en cada etapa del ejercicio permiten confirmar que los SEM son herramientas poderosas para modelar relaciones entre variables latentes en diferentes contextos. En particular: • Se verificaron las relaciones entre habilidades cognitivas en adolescentes. • Se identificó la influencia de la industrialización en la democratización de países en desarrollo. • Se modelaron experiencias de recuperación laboral y engagement, lo que aporta información valiosa para comprender cómo estos factores influyen en el bienestar laboral.

El análisis de los índices de ajuste (CFI, TLI) permitió validar o ajustar los modelos según su desempeño estadístico. En general, los resultados obtenidos respaldan la aplicabilidad de los SEM para entender estructuras de datos complejas y extraer conclusiones sobre relaciones entre variables latentes.

LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDMuIEFwbGljYWNpw7NuIGRlIG1vZGVsb3MgZGUgZWN1YWNpb25lcyBlc3RydWN0dXJhbGVzIChhY3RpdmlkYWQgaW5kaXZpZHVhbCkiCmF1dGhvcjogIkdlbmFybyBSb2Ryw61ndWV6IEFsY8OhbnRhcmEgLSBBMDA4MzMxNzIiCmRhdGU6ICIyMDI1LTAyLTE5IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6IGNlcnVsZWFuCi0tLQohW10oL1VzZXJzL2dlbmFyb3JvZHJpZ3VlemFsY2FudGFyYS9EZXNrdG9wL1RlYy9HZW5lcmFjaW9uIGRlIGVzY2VuYXJpb3MgZnV0dXJvcyBjb24gYW5hbGnMgXRpY2EgKEdwbyAxMDEpL1BJQi9NMSAtIEFjdGl2aWRhZCAzL2dpcGh5LmdpZikKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBicm93bjsiPlNFTTwvc3Bhbj4KCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5UZW9yw61hPC9zcGFuPgpMb3MgKipNb2RlbG9zIGRlIEVjdWFjaW9uZXMgRXN0cnVjdHVyYWxlcyAoU0VNKSoqIGVzIHVuYSB0w6ljbmljYSBkZSBhbsOhbGlzaXMgZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIGUgaW50cmFncnVwb3MsIHkgdmFsaWRhciBtb2RlbG9zIHRlw7NyaWNvcyB5IGVtcMOtcmljb3MuCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+RWplbXBsbyAxLiBIb2x6aW5nZXIgeSBTd2luZWZvcmQgKDE5MzkpPC9zcGFuPgpIb2x6aW5nZXIgeSBTd2luZWZvcmQgcmVhbGl6YXJvbiBleMOhbWVuZXMgZGUgaGFiaWxpZGFkIG1lbnRhbCBhIGFkb2xlc2NlbnRlcyBkZSA3wrAgeSA4wrAgZGUgZG9zIGVzY3VlbGFzIChQYXN0ZXVyIHkgR3JhbmQtV2hpdGUpCgoqIHNleDogR8OpbmVybyAoMT1tYWxlLCAyPWZlbWFsZSkKKiB4MTogUGVyY2VwY2nDs24gdmlzdWFsCiogeDI6IEp1ZWdvIGRlIGN1Ym9zCiogeDM6IEp1ZWdvIGNvbiBwYXN0aWxsYXMvZXNwYWNpYWwKKiB4NDogQ29tcHJlbnNpw7NuIGRlIHDDoXJyYWZvcwoqIHg1OiBDb21wbGV0YXIgb3JhY2lvbmVzCiogeDY6IFNpZ25maWNhZG8gZGUgcGFsYWJyYXMKKiB4NzogU3VtYXMgYWNlbGVyYWRhcwoqIHg4OiBDb250ZW8gYWNlbGVyYWRvIGRlIHB1bnRvcwoqIHg5OiBEaXNjcmltaW5hY2nDs24gYWNlbGVyYWRhIGRlIG1hecO6c2N1bGFzIHJlY3RhcyB5IGN1cnZhcwoKU2UgYnVzY2EgaWRlbnRpZmljYXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgbGFzIGhhYmlsaWRhZGVzIHZpc3VhbCAoeDEseDIseDMpLCB0ZXh0dWFsICh4NCx4NSx4NikgeSB2ZWxvY2lkYWQgKHg3LHg4LHg5KSBkZSBsb3MgYWRvbGVzY2VudGVzLgoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5MaWJyZXJpYXM8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkobGF2YWFuUGxvdCkKbGlicmFyeShsYXZhYW4pCmxpYnJhcnkocmVhZHhsKQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+SW1wb3J0YXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5CmBgYAoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5JbXBvcnRhciBiYXNlIGRlIGRhdG9zPC9zcGFuPgoxLiBSZWdyZXNpw7NuICh+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcwoyLiBWYXJpYWJsZXMgTGF0ZW50ZXMgKD1+KSBubyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlCjMuIFZhcmlhYmxlcyB5IENvdmFyaWFuemFzICh+fikgUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgYWx0ZW50ZXMgeSBvYnNlcnZhZGEgKFZhcmlhbnphOiBFbnRyZSBzaSBtaWlzbWEsIENvdmFyaWFuemE6IEVudHJlIG90cmFzKQo0LiBJbnRlcmNlcHRvICh+MSkgVmFsb3IgZXNwZXJhZG8gY3VhbmRvIGxhcyBkZW1hcyB2YXJpYWJsZXMgc29uIGNlcm8uCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBicm93bjsiPkVzdHJ1Y3R1cmFyIGVsIG1vZGVsbzwvc3Bhbj4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbW9kZWxvMSA8LSAnICMgUmVncmVzaW9uZXMKICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzCiAgICAgICAgICAgICB2aXN1YWwgPX4geDEgKyB4MiArIHgzCiAgICAgICAgICAgICB0ZXh0dWFsID1+IHg0ICsgeDUgKyB4NgogICAgICAgICAgICAgdmVsb2NpZGFkID1+IHg3ICsgeDggKyB4OQogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphCiAgICAgICAgICAgICB2aXN1YWwgfn4gdmlzdWFsCiAgICAgICAgICAgICB0ZXh0dWFsIH5+IHRleHR1YWwKICAgICAgICAgICAgIHZlbG9jaWRhZCB+fiB2ZWxvY2lkYWQKICAgICAgICAgICAgIHZpc3VhbCB+fiB0ZXh0dWFsICsgdmVsb2NpZGFkCiAgICAgICAgICAgICB0ZXh0dWFsIH5+IHZlbG9jaWRhZAogICAgICAgICAgICAgIyBJbnRlcmNlcHRvCiAgICAgICAgICAnIApgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+R2VuZXJhciBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSk8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmNmYTEgPC0gc2VtKG1vZGVsbzEsIGRhdGE9ZGYxKQpzdW1tYXJ5KGNmYTEpCmxhdmFhblBsb3QoY2ZhMSwgY29lZj1UUlVFLCBjb3Y9VFJVRSkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+KipFamVyY2ljaW8gMS4gRGVtb2NyYXRpemFyIHBvbMOtdGljYSBlIGluZHVzdHJpYWxpemFjacOzbioqPC9zcGFuPgoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5Db250ZXh0bzwvc3Bhbj4KTGEgYmFzZSBkZSBkYXRvcyBjb250aWVuZSBkaXN0aW50YXMgbWVkaWNpb25lcyBzb2JyZSBsYSBkZW1vcmFjaWEgcG9sw610aWNhIGUgaW5kdXN0cmlhbGl6YWNpw7NuIGVuIHBhaXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUuCgpMYSB0YWJsYSBpbmNsdXllIGxvcyBzaWd1aWVudGVzIGRhdG9zOgoKKiB5MTogQ2FsaWZpY2FjaW9uZXMgc29icmUgbGliZXJ0YWQgZGUgcHJlbnNhIGVuIDE5NjAKKiB5MjogTGliZXJ0YWQgZGUgbGEgb3Bvc2ljacOzbiBwb2xpdGljYSBlbiAxOTYwCiogeTM6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTYwCiogeTQ6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTYwCiogeTU6IENhbGlmaWNhY2lvbmVzIHNvYnJlIGxpYmVydGFkIGRlIHByZW5zYSBlbiAxOTY1CiogeTY6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9saXRpY2EgZW4gMTk2NQoqIHk3OiBJbXBhcmNpYWxpZGFkIGRlIGVsZWNjaW9uZXMgZW4gMTk2NQoqIHk4OiBFZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbGVjdGEgZW4gMTk2NQoqIHgxOiBQSUIgcGVyIGPDoXBpdGEgZW4gMTk2MAoqIHgyOiBDb25zdW1vIGRlIGVuZXJnw61hIGluYW5pbWFkYSBwZXIgY8OhcGl0YSBlbiAxOTYwCiogeDM6IFBvcmNlbnRhamUgZGUgbGEgZnVlcnphIGxhYm9yYWwgZW4gbGEgaW5kdXN0cmlhIGVuIDE5NjAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+SW1wb3J0YXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CmRmMiA8LSBQb2xpdGljYWxEZW1vY3JhY3kKYGBgCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBicm93bjsiPjIuIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGRmMikKc3RyKGRmMikKaGVhZChkZjIpCmBgYAoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij4zLiBFc3RydWN0dXJhciBlbCBtb2RlbG88L3NwYW4+CmBgYHtyfQptb2RlbG8yIDwtICcKICAjIERlZmluaXIgdmFyaWFibGVzIGxhdGVudGVzIGRlIGRlbW9jcmF0aXphY2nDs24gZW4gMTk2MCB5IDE5NjUKICBEZW0xOTYwID1+IHkxICsgeTIgKyB5MyArIHk0CiAgRGVtMTk2NSA9fiB5NSArIHk2ICsgeTcgKyB5OAoKICAjIERlZmluaXIgdmFyaWFibGUgbGF0ZW50ZSBkZSBpbmR1c3RyaWFsaXphY2nDs24KICBJbmQxOTYwID1+IHgxICsgeDIgKyB4MwoKICAjIFJlbGFjaW9uYXIgZGVtb2NyYXRpemFjacOzbiBkZSAxOTYwIGNvbiAxOTY1CiAgRGVtMTk2NSB+IERlbTE5NjAKCiAgIyBSZWxhY2lvbmFyIGluZHVzdHJpYWxpemFjacOzbiBjb24gZGVtb2NyYXRpemFjacOzbgogIERlbTE5NjAgfiBJbmQxOTYwCiAgRGVtMTk2NSB+IEluZDE5NjAKCiAgIyBFc3BlY2lmaWNhciB2YXJpYW56YXMgeSBjb3ZhcmlhbnphcwogIERlbTE5NjAgfn4gRGVtMTk2MAogIERlbTE5NjUgfn4gRGVtMTk2NQogIEluZDE5NjAgfn4gSW5kMTk2MAogIERlbTE5NjAgfn4gSW5kMTk2MAogIERlbTE5NjUgfn4gSW5kMTk2MAogICcKYGBgCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBicm93bjsiPjQuIEdlbmVyYXIgZWwgYW7DoWxpc2lzIGZhY3RvcmlhbCBjb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPgpgYGB7cn0KY2ZhMiA8LSBzZW0obW9kZWxvMiwgZGF0YT1kZjIsIHNlPSJib290c3RyYXAiKQpzdW1tYXJ5KGNmYTIsIHN0YW5kYXJkaXplZD1UUlVFLCBmaXQubWVhc3VyZXM9VFJVRSkKbGF2YWFuUGxvdChjZmEyLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5BY3RpdmRhZCAzOiBBcGxpY2FjacOzbiBkZSBtb2RlbG9zIGRlIGVjdWFjaW9uZXMgZXN0cnVjdHVyYWxlczwvc3Bhbj4KCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+RW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CmRmMyA8LSByZWFkX2V4Y2VsKCIvVXNlcnMvZ2VuYXJvcm9kcmlndWV6YWxjYW50YXJhL0Rlc2t0b3AvVGVjL0dlbmVyYWNpb24gZGUgZXNjZW5hcmlvcyBmdXR1cm9zIGNvbiBhbmFsacyBdGljYSAoR3BvIDEwMSkvUElCL00xIC0gQWN0aXZpZGFkIDMvRGF0b3NfU0VNX0VuZy54bHN4IikKc3VtbWFyeShkZjMpCmhlYWQoZGYzKQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+UGFydGUgMS4gRXhwZXJpZW5jaWFzIGRlIFJlY3VwZXJhY2nDs248L3NwYW4+CmBgYHtyfQptb2RlbG8zXzEgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcwogICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwCiAgICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwCiAgICAgICAgICAgICBkb21pbmlvID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMAogICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcKICAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbAogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphCiAgICAgICAgICAgICBkZXNhcGVnbyB+fiBkZXNhcGVnbwogICAgICAgICAgICAgcmVsYWphY2lvbiB+fiByZWxhamFjaW9uCiAgICAgICAgICAgICBkb21pbmlvIH5+IGRvbWluaW8KICAgICAgICAgICAgIGNvbnRyb2wgfn4gY29udHJvbAogICAgICAgICAgICAgIyBJbnRlcmNlcHRvCiAgICAgICAgICAnIApgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+R2VuZXJhciBlbCBhbsOhbGlzaXMgZmFjdG9yaWFsIGNvbmZpcm1hdG9yaW8gKENGQSk8L3NwYW4+CmBgYHtyfQpjZmEzXzEgPC0gc2VtKG1vZGVsbzNfMSwgZGF0YT1kZjMpCnN1bW1hcnkoY2ZhM18xLCBzdGFuZGFyZGl6ZWQ9VFJVRSwgZml0Lm1lYXN1cmVzPVRSVUUpCmxhdmFhblBsb3QoY2ZhM18xLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+RXZhbHVhciBlbCBNb2RlbG88L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGNmYTNfMSwgZml0Lm1lYXN1cmVzPVRSVUUpCiMgUmV2aXNhciBsb3MgdmFsb3JlcyBkZSBjb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSWJkZXggKFRMSSkKIyBFY2NlbGVudGUgc2kgZXMgPj0gMC45NSwgQWNlcHRhYmxlIGVubnRyZSAwLjkgeSAwLTk1LCBEZWZpY2llbnRlIDwgMC45MApgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+UGFydGUgMi4gRW5lcmfDrWEgUmVjdXBlcmFkYTwvc3Bhbj4KYGBge3J9Cm1vZGVsbzNfMiA8LSAnICMgUmVncmVzaW9uZXMKICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzCiAgICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICsgRU4wNCArIEVOMDUgKyBFTjA2ICsgRU4wNyArIEVOMDgKICAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YQogICAgICAgICAgICAgZW5lcmdpYSB+fiBlbmVyZ2lhCiAgICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICcgCmBgYAoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5HZW5lcmFyIGVsIGFuw6FsaXNpcyBmYWN0b3JpYWwgY29uZmlybWF0b3JpbyAoQ0ZBKTwvc3Bhbj4KYGBge3J9CmNmYTNfMiA8LSBzZW0obW9kZWxvM18yLCBkYXRhPWRmMywgc2U9ImJvb3RzdHJhcCIpCnN1bW1hcnkoY2ZhM18yLCBzdGFuZGFyZGl6ZWQ9VFJVRSwgZml0Lm1lYXN1cmVzPVRSVUUpCmxhdmFhblBsb3QoY2ZhM18yLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+RXZhbHVhciBlbCBNb2RlbG88L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGNmYTNfMiwgZml0Lm1lYXN1cmVzPVRSVUUpCiMgUmV2aXNhciBsb3MgdmFsb3JlcyBkZSBjb21wYXJhdGl2ZSBGaXQgSW5uZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEliZGV4IChUTEkpCiMgRWNjZWxlbnRlIHNpIGVzID49IDAuOTUsIEFjZXB0YWJsZSBlbm50cmUgMC45IHkgMC05NSwgRGVmaWNpZW50ZSA8IDAuOTAKYGBgCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBicm93bjsiPlBhcnRlIDMuIEFuYWxpc2lzIGRlIEVuZ2FnZW1lbnQgTGFib3JhbDwvc3Bhbj4KYGBge3J9Cm1vZGVsbzNfMyA8LSAnICMgUmVncmVzaW9uZXMKICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzCiAgICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMKICAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzCiAgICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMiArIEVBQjAzCiAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemEKICAgICAgICAgICAgIHZpZ29yIH5+IHZpZ29yCiAgICAgICAgICAgICBkZWRpY2FjaW9uIH5+IGRlZGljYWNpb24KICAgICAgICAgICAgIHZpZ29yIH5+IGFic29yY2lvbiArIGRlZGljYWNpb24KICAgICAgICAgICAgIGRlZGljYWNpb24gfn4gYWJzb3JjaW9uCiAgICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICcgCmBgYAoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5HZW5lcmFyIGVsIGFuw6FsaXNpcyBmYWN0b3JpYWwgY29uZmlybWF0b3JpbyAoQ0ZBKTwvc3Bhbj4KYGBge3J9CmNmYTNfMyA8LSBzZW0obW9kZWxvM18zLCBkYXRhPWRmMywgc2U9ImJvb3RzdHJhcCIpCnN1bW1hcnkoY2ZhM18zLCBzdGFuZGFyZGl6ZWQ9VFJVRSwgZml0Lm1lYXN1cmVzPVRSVUUpCmxhdmFhblBsb3QoY2ZhM18zLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQpgYGAKCiMjIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJyb3duOyI+RXZhbHVhciBlbCBNb2RlbG88L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGNmYTNfMywgZml0Lm1lYXN1cmVzPVRSVUUpCiMgUmV2aXNhciBsb3MgdmFsb3JlcyBkZSBjb21wYXJhdGl2ZSBGaXQgSW5uZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEliZGV4IChUTEkpCiMgRWNjZWxlbnRlIHNpIGVzID49IDAuOTUsIEFjZXB0YWJsZSBlbm50cmUgMC45IHkgMC05NSwgRGVmaWNpZW50ZSA8IDAuOTAKYGBgCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBicm93bjsiPlBhcnRlIDQuIEFuYWxpc2lzIGRlIEVuZ2FnZW1lbnQgTGFib3JhbDwvc3Bhbj4KYGBge3J9Cm1vZGVsbzNfNCA8LSAnICMgUmVncmVzaW9uZXMKICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzCiAgICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTAKICAgICAgICAgICAgIHJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3ICsgUlJFMTAKICAgICAgICAgICAgIGRvbWluaW8gPX4gUk1BMDIgKyBSTUEwMyArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNiArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwCiAgICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNwogICAgICAgICAgICAgcmVjdXBlcmFjaW9uID1+IGRlc2FwZWdvICsgcmVsYWphY2lvbiArIGRvbWluaW8gKyBjb250cm9sCiAgICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICsgRU4wNCArIEVOMDUgKyBFTjA2ICsgRU4wNyArIEVOMDggCiAgICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMKICAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzCiAgICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMiArIEVBQjAzCiAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemEKICAgICAgICAgICAgIGRlc2FwZWdvIH5+IGRlc2FwZWdvCiAgICAgICAgICAgICByZWxhamFjaW9uIH5+IHJlbGFqYWNpb24KICAgICAgICAgICAgIGRvbWluaW8gfn4gZG9taW5pbwogICAgICAgICAgICAgY29udHJvbCB+fiBjb250cm9sCiAgICAgICAgICAgICBlbmVyZ2lhIH5+IGVuZXJnaWEKICAgICAgICAgICAgIHZpZ29yIH5+IHZpZ29yCiAgICAgICAgICAgICBkZWRpY2FjaW9uIH5+IGRlZGljYWNpb24KICAgICAgICAgICAgIHZpZ29yIH5+IGFic29yY2lvbiArIGRlZGljYWNpb24KICAgICAgICAgICAgIGRlZGljYWNpb24gfn4gYWJzb3JjaW9uCiAgICAgICAgICAgICByZWN1cGVyYWNpb24gfn4gYWJzb3JjaW9uICsgZGVkaWNhY2lvbiArIGVuZXJnaWEgKyB2aWdvcgogICAgICAgICAgICAgZW5lcmdpYSB+fiB2aWdvciArIGRlZGljYWNpb24gKyBhYnNvcmNpb24KICAgICAgICAgICAgICMgSW50ZXJjZXB0bwogICAgICAgICAgJyAKYGBgCgojIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBicm93bjsiPkdlbmVyYXIgZWwgYW7DoWxpc2lzIGZhY3RvcmlhbCBjb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPgpgYGB7cn0KY2ZhM180IDwtIHNlbShtb2RlbG8zXzQsIGRhdGE9ZGYzLCBzZT0iYm9vdHN0cmFwIikKc3VtbWFyeShjZmEzXzQsIHN0YW5kYXJkaXplZD1UUlVFLCBmaXQubWVhc3VyZXM9VFJVRSkKbGF2YWFuUGxvdChjZmEzXzQsIGNvZWY9VFJVRSwgY292PVRSVUUpCmBgYAoKIyMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5FdmFsdWFyIGVsIE1vZGVsbzwvc3Bhbj4KYGBge3J9CnN1bW1hcnkoY2ZhM180LCBmaXQubWVhc3VyZXM9VFJVRSkKIyBSZXZpc2FyIGxvcyB2YWxvcmVzIGRlIGNvbXBhcmF0aXZlIEZpdCBJbm5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSWJkZXggKFRMSSkKIyBFY2NlbGVudGUgc2kgZXMgPj0gMC45NSwgQWNlcHRhYmxlIGVubnRyZSAwLjkgeSAwLTk1LCBEZWZpY2llbnRlIDwgMC45MApgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYnJvd247Ij5Db25jbHVzacOzbiBHZW5lcmFsPC9zcGFuPgpMb3MgcmVzdWx0YWRvcyBvYnRlbmlkb3MgZW4gY2FkYSBldGFwYSBkZWwgZWplcmNpY2lvIHBlcm1pdGVuIGNvbmZpcm1hciBxdWUgbG9zIFNFTSBzb24gaGVycmFtaWVudGFzIHBvZGVyb3NhcyBwYXJhIG1vZGVsYXIgcmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgbGF0ZW50ZXMgZW4gZGlmZXJlbnRlcyBjb250ZXh0b3MuIEVuIHBhcnRpY3VsYXI6CgnigKIJU2UgdmVyaWZpY2Fyb24gbGFzIHJlbGFjaW9uZXMgZW50cmUgaGFiaWxpZGFkZXMgY29nbml0aXZhcyBlbiBhZG9sZXNjZW50ZXMuCgnigKIJU2UgaWRlbnRpZmljw7MgbGEgaW5mbHVlbmNpYSBkZSBsYSBpbmR1c3RyaWFsaXphY2nDs24gZW4gbGEgZGVtb2NyYXRpemFjacOzbiBkZSBwYcOtc2VzIGVuIGRlc2Fycm9sbG8uCgnigKIJU2UgbW9kZWxhcm9uIGV4cGVyaWVuY2lhcyBkZSByZWN1cGVyYWNpw7NuIGxhYm9yYWwgeSBlbmdhZ2VtZW50LCBsbyBxdWUgYXBvcnRhIGluZm9ybWFjacOzbiB2YWxpb3NhIHBhcmEgY29tcHJlbmRlciBjw7NtbyBlc3RvcyBmYWN0b3JlcyBpbmZsdXllbiBlbiBlbCBiaWVuZXN0YXIgbGFib3JhbC4KCkVsIGFuw6FsaXNpcyBkZSBsb3Mgw61uZGljZXMgZGUgYWp1c3RlIChDRkksIFRMSSkgcGVybWl0acOzIHZhbGlkYXIgbyBhanVzdGFyIGxvcyBtb2RlbG9zIHNlZ8O6biBzdSBkZXNlbXBlw7FvIGVzdGFkw61zdGljby4gRW4gZ2VuZXJhbCwgbG9zIHJlc3VsdGFkb3Mgb2J0ZW5pZG9zIHJlc3BhbGRhbiBsYSBhcGxpY2FiaWxpZGFkIGRlIGxvcyBTRU0gcGFyYSBlbnRlbmRlciBlc3RydWN0dXJhcyBkZSBkYXRvcyBjb21wbGVqYXMgeSBleHRyYWVyIGNvbmNsdXNpb25lcyBzb2JyZSByZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRlbnRlcy4=