This template offers an opinionated guide on how to structure a modeling analysis. Your individual modeling analysis may require you to add to, subtract from, or otherwise change this structure, but consider this a general framework to start from. If you want to learn more about using tidymodels, check out our Getting Started guide.
In this example analysis, let’s fit a model to predict the rating of chocolates from various information and aspects.
library(tidyverse)
url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-01-18/chocolate.csv"
chocolate <- read_csv(url)
## Rows: 2530 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): company_manufacturer, company_location, country_of_bean_origin, spe...
## dbl (3): ref, review_date, rating
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Exploratory data analysis (EDA) is an important part of the modeling process.
chocolate %>%
ggplot(aes(rating)) +
geom_histogram(bins = 15)
library(tidytext)
tidy_chocolate <-
chocolate %>%
unnest_tokens(word, most_memorable_characteristics)
tidy_chocolate %>%
count(word, sort = TRUE)
## # A tibble: 547 × 2
## word n
## <chr> <int>
## 1 cocoa 419
## 2 sweet 318
## 3 nutty 278
## 4 fruit 273
## 5 roasty 228
## 6 mild 226
## 7 sour 208
## 8 earthy 199
## 9 creamy 189
## 10 intense 178
## # ℹ 537 more rows
tidy_chocolate %>%
group_by(word) %>%
summarise(n = n(),
rating = mean(rating)) %>%
ggplot(aes(n, rating)) +
geom_hline(yintercept = mean(chocolate$rating),
lty = 2, color = "gray50", linewidth = 1.2) +
geom_point(color = "midnightblue", alpha = 0.7) +
geom_text(aes(label = word),
#family = "IBMPlexSans",
check_overlap = TRUE, vjust = "top", hjust = "left") +
scale_x_log10()
Let’s consider how to spend our data budget:
library(tidymodels)
set.seed(123)
choco_split <- initial_split(chocolate, strata = rating)
choco_train <- training(choco_split)
choco_test <- testing(choco_split)
set.seed(234)
choco_folds <- vfold_cv(choco_train, strata = rating)
choco_folds
## # 10-fold cross-validation using stratification
## # A tibble: 10 × 2
## splits id
## <list> <chr>
## 1 <split [1705/191]> Fold01
## 2 <split [1705/191]> Fold02
## 3 <split [1705/191]> Fold03
## 4 <split [1706/190]> Fold04
## 5 <split [1706/190]> Fold05
## 6 <split [1706/190]> Fold06
## 7 <split [1707/189]> Fold07
## 8 <split [1707/189]> Fold08
## 9 <split [1708/188]> Fold09
## 10 <split [1709/187]> Fold10
Let’s set up our preprocessing:
library(textrecipes)
choco_rec <-
recipe(rating ~ most_memorable_characteristics, data = choco_train) %>%
step_tokenize(most_memorable_characteristics) %>%
step_tokenfilter(most_memorable_characteristics, max_tokens = 100) %>%
step_tfidf(most_memorable_characteristics)
## just to check this work
prep(choco_rec) %>% bake(new_data = NULL)
## # A tibble: 1,896 × 101
## rating tfidf_most_memorable_c…¹ tfidf_most_memorable…² tfidf_most_memorable…³
## <dbl> <dbl> <dbl> <dbl>
## 1 3 0 0 0
## 2 2.75 0 0 0
## 3 3 0 0 0
## 4 3 0 0 0
## 5 2.75 0 0 0
## 6 3 1.38 0 0
## 7 2.75 0 0 0
## 8 2.5 0 0 0
## 9 2.75 0 0 0
## 10 3 0 0 0
## # ℹ 1,886 more rows
## # ℹ abbreviated names: ¹tfidf_most_memorable_characteristics_acidic,
## # ²tfidf_most_memorable_characteristics_and,
## # ³tfidf_most_memorable_characteristics_astringent
## # ℹ 97 more variables: tfidf_most_memorable_characteristics_banana <dbl>,
## # tfidf_most_memorable_characteristics_base <dbl>,
## # tfidf_most_memorable_characteristics_basic <dbl>, …
Let’s create a model specification for each model we want to try:
ranger_spec <-
rand_forest(trees = 500) %>%
set_mode("regression")
ranger_spec
## Random Forest Model Specification (regression)
##
## Main Arguments:
## trees = 500
##
## Computational engine: ranger
svm_spec <-
svm_linear() %>%
set_mode("regression")
svm_spec
## Linear Support Vector Machine Model Specification (regression)
##
## Computational engine: LiblineaR
To set up your modeling code, consider using the parsnip addin or the usemodels package.
Now let’s build a model workflow combining each model specification with a data preprocessor:
ranger_wf <- workflow(choco_rec, ranger_spec)
svm_wf <- workflow(choco_rec, svm_spec)
If your feature engineering needs are more complex than provided by a formula like sex ~ ., use a recipe. Read more about feature engineering with recipes to learn how they work.
These models have no tuning parameters so we can evaluate them as they are. Learn about tuning hyperparameters here.
doParallel::registerDoParallel()
contrl_preds <- control_resamples(save_pred = TRUE)
svm_rs <- fit_resamples(
svm_wf,
resamples = choco_folds,
control = contrl_preds
)
ranger_rs <- fit_resamples(
ranger_wf,
resamples = choco_folds,
control = contrl_preds
)
How did these two models compare?
collect_metrics(svm_rs)
## # A tibble: 2 × 6
## .metric .estimator mean n std_err .config
## <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 rmse standard 0.347 10 0.00656 Preprocessor1_Model1
## 2 rsq standard 0.367 10 0.0181 Preprocessor1_Model1
collect_metrics(ranger_rs)
## # A tibble: 2 × 6
## .metric .estimator mean n std_err .config
## <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 rmse standard 0.350 10 0.00666 Preprocessor1_Model1
## 2 rsq standard 0.358 10 0.0161 Preprocessor1_Model1
We can visualize these results:
bind_rows(
collect_predictions(svm_rs) %>%
mutate(mod = "SVM"),
collect_predictions(ranger_rs) %>%
mutate(mod = "ranger")
) %>%
ggplot(aes(rating, .pred, color = id)) +
geom_abline(lty = 2, color = "gray50", linewidth = 1.2) +
geom_jitter(width = 0.5, alpha = 0.5) +
facet_wrap(vars(mod)) +
coord_fixed()
These models perform very similarly, so perhaps we would choose the simpler, linear model. The function last_fit() fits one final time on the training data and evaluates on the testing data. This is the first time we have used the testing data.
final_fitted <- last_fit(svm_wf, choco_split)
collect_metrics(final_fitted) ## metrics evaluated on the *testing* data
## # A tibble: 2 × 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 0.381 Preprocessor1_Model1
## 2 rsq standard 0.348 Preprocessor1_Model1
This object contains a fitted workflow that we can use for prediction.
final_wf <- extract_workflow(final_fitted)
predict(final_wf, choco_test[55,])
## # A tibble: 1 × 1
## .pred
## <dbl>
## 1 3.51
You can save this fitted final_wf object to use later with new data, for example with readr::write_rds().
extract_workflow(final_fitted) %>%
tidy() %>%
filter(term != "Bias") %>%
group_by(estimate > 0) %>%
slice_max(abs(estimate), n = 10) %>%
ungroup() %>%
mutate(term = str_remove(term, "tfidf_most_memorable_characteristics_")) %>%
ggplot(aes(estimate, fct_reorder(term, estimate), fill = estimate > 0)) +
geom_col(alpha = 0.8)