La base de datos es de la universidad de Nueva York y contiene 90 observaciones que incluyen los costos de 6 aerolíneas estadounidenses durante 15 años, desde 1970 a 1984.
Las variables que incluye son:
Fuente: Tabla F7.1
## I T C Q
## Min. :1.0 Min. : 1 Min. : 68978 Min. :0.03768
## 1st Qu.:2.0 1st Qu.: 4 1st Qu.: 292046 1st Qu.:0.14213
## Median :3.5 Median : 8 Median : 637001 Median :0.30503
## Mean :3.5 Mean : 8 Mean :1122524 Mean :0.54499
## 3rd Qu.:5.0 3rd Qu.:12 3rd Qu.:1345968 3rd Qu.:0.94528
## Max. :6.0 Max. :15 Max. :4748320 Max. :1.93646
## PF LF
## Min. : 103795 Min. :0.4321
## 1st Qu.: 129848 1st Qu.:0.5288
## Median : 357434 Median :0.5661
## Mean : 471683 Mean :0.5605
## 3rd Qu.: 849840 3rd Qu.:0.5947
## Max. :1015610 Max. :0.6763
## 'data.frame': 90 obs. of 6 variables:
## $ I : int 1 1 1 1 1 1 1 1 1 1 ...
## $ T : int 1 2 3 4 5 6 7 8 9 10 ...
## $ C : int 1140640 1215690 1309570 1511530 1676730 1823740 2022890 2314760 2639160 3247620 ...
## $ Q : num 0.953 0.987 1.092 1.176 1.16 ...
## $ PF: int 106650 110307 110574 121974 196606 265609 263451 316411 384110 569251 ...
## $ LF: num 0.534 0.532 0.548 0.541 0.591 ...
#Convertir Tipo de Variables
## Transformar Aerolinea a Factor
df$I <- as.factor(df$I)
## Agregar columna de año (1970 - 1984)
df$Y <- df$T + 1969
#Revisar Cambios
summary(df)## I T C Q PF
## 1:15 Min. : 1 Min. : 68978 Min. :0.03768 Min. : 103795
## 2:15 1st Qu.: 4 1st Qu.: 292046 1st Qu.:0.14213 1st Qu.: 129848
## 3:15 Median : 8 Median : 637001 Median :0.30503 Median : 357434
## 4:15 Mean : 8 Mean :1122524 Mean :0.54499 Mean : 471683
## 5:15 3rd Qu.:12 3rd Qu.:1345968 3rd Qu.:0.94528 3rd Qu.: 849840
## 6:15 Max. :15 Max. :4748320 Max. :1.93646 Max. :1015610
## LF Y
## Min. :0.4321 Min. :1970
## 1st Qu.:0.5288 1st Qu.:1973
## Median :0.5661 Median :1977
## Mean :0.5605 Mean :1977
## 3rd Qu.:0.5947 3rd Qu.:1981
## Max. :0.6763 Max. :1984
## 'data.frame': 90 obs. of 7 variables:
## $ I : Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ T : int 1 2 3 4 5 6 7 8 9 10 ...
## $ C : int 1140640 1215690 1309570 1511530 1676730 1823740 2022890 2314760 2639160 3247620 ...
## $ Q : num 0.953 0.987 1.092 1.176 1.16 ...
## $ PF: int 106650 110307 110574 121974 196606 265609 263451 316411 384110 569251 ...
## $ LF: num 0.534 0.532 0.548 0.541 0.591 ...
## $ Y : num 1970 1971 1972 1973 1974 ...
# Graficar con ggplot2
ggplot(df, aes(x = Y, y = C, color = I, group = I)) +
geom_line() +
labs(title = "Costo por Aerolinea 1970 - 1984", x = "Año",
y = "Costo (miles de USD)", color = "Aerolinea") +
theme_minimal()ggplot(df, aes(x = Y, y = Q, color = I, group = I)) +
geom_line() +
labs(title = "Millas Voladas por Aerolinea 1970 - 1984", x = "Año",
y = "Indice Normalizado", color = "Aerolinea") +
theme_minimal()ggplot(df, aes(x = Y, y = PF, color = I, group = I)) +
geom_line() +
labs(title = "Precio Combustible por Aerolinea 1970 - 1984", x = "Año",
y = "Precio (USD)", color = "Aerolinea") +
theme_minimal()ggplot(df, aes(x = Y, y = LF, color = I, group = I)) +
geom_line() +
labs(title = "Factor de carga por Aerolinea 1970 - 1984", x = "Año",
y = "Porcentaje", color = "Aerolinea") +
theme_minimal()plotmeans(C ~ I, main = "Heterogeniedad entre aerolineas", xlab = "Aerolineas", ylab = "Costo (miles de USD)", data = df)Como el valor promedio (círculo) y el rango intercuartil (lineas azules) varian entre individuos, se identifica presencia de heterogeniedad.
El Modelo de Regresión Agrupada (Pooled) es una técnica de estimación
en datos de panel donde se asume que no hay efectos individuales
específicos para cada unidad, ni variaciones en el tiempo.
¡Ignora Heterogeniedades!
## Pooling Model
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "pooling")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -520654 -250270 37333 208690 849700
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 1.1586e+06 3.6059e+05 3.2129 0.00185 **
## Q 2.0261e+06 6.1807e+04 32.7813 < 2.2e-16 ***
## PF 1.2253e+00 1.0372e-01 11.8138 < 2.2e-16 ***
## LF -3.0658e+06 6.9633e+05 -4.4027 3.058e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.2647e+14
## Residual Sum of Squares: 6.8177e+12
## R-Squared: 0.94609
## Adj. R-Squared: 0.94421
## F-statistic: 503.118 on 3 and 86 DF, p-value: < 2.22e-16
##
## Lagrange Multiplier Test - (Breusch-Pagan)
##
## data: C ~ Q + PF + LF
## chisq = 0.61309, df = 1, p-value = 0.4336
## alternative hypothesis: significant effects
Como el p-value es mayor a 0.05, podemos utilizar el Modelo Pooled
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "within")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -551783 -159259 1796 0 137226 499296
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Q 3.3190e+06 1.7135e+05 19.3694 < 2.2e-16 ***
## PF 7.7307e-01 9.7319e-02 7.9437 9.698e-12 ***
## LF -3.7974e+06 6.1377e+05 -6.1869 2.375e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.0776e+13
## Residual Sum of Squares: 3.5865e+12
## R-Squared: 0.92937
## Adj. R-Squared: 0.92239
## F-statistic: 355.254 on 3 and 81 DF, p-value: < 2.22e-16
walhus <- plm(C ~ Q + PF + LF, data = df_panel, model = "random", random.method = "walhus")
summary(walhus)## Oneway (individual) effect Random Effect Model
## (Wallace-Hussain's transformation)
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "random",
## random.method = "walhus")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Effects:
## var std.dev share
## idiosyncratic 7.339e+10 2.709e+05 0.969
## individual 2.363e+09 4.861e+04 0.031
## theta: 0.1788
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -524180 -243611 39332 199517 824905
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.1267e+06 3.6994e+05 3.0455 0.002323 **
## Q 2.0647e+06 7.1927e+04 28.7051 < 2.2e-16 ***
## PF 1.2075e+00 1.0358e-01 11.6578 < 2.2e-16 ***
## LF -3.0314e+06 7.1431e+05 -4.2438 2.198e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.0182e+14
## Residual Sum of Squares: 6.5784e+12
## R-Squared: 0.93539
## Adj. R-Squared: 0.93314
## Chisq: 1245.09 on 3 DF, p-value: < 2.22e-16
amemiya <- plm(C ~ Q + PF + LF, data = df_panel, model = "random", random.method = "amemiya")
summary(amemiya)## Oneway (individual) effect Random Effect Model
## (Amemiya's transformation)
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "random",
## random.method = "amemiya")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Effects:
## var std.dev share
## idiosyncratic 4.270e+10 2.066e+05 0.084
## individual 4.640e+11 6.812e+05 0.916
## theta: 0.9219
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -603585 -144415 22641 158005 485417
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.0746e+06 4.2105e+05 2.5522 0.0107 *
## Q 3.2090e+06 1.6482e+05 19.4695 < 2.2e-16 ***
## PF 8.1014e-01 9.6147e-02 8.4260 < 2.2e-16 ***
## LF -3.7168e+06 6.1330e+05 -6.0603 1.359e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.1238e+13
## Residual Sum of Squares: 3.8227e+12
## R-Squared: 0.92539
## Adj. R-Squared: 0.92279
## Chisq: 1066.71 on 3 DF, p-value: < 2.22e-16
nerlove <- plm(C ~ Q + PF + LF, data = df_panel, model = "random", random.method = "nerlove")
summary(nerlove)## Oneway (individual) effect Random Effect Model
## (Nerlove's transformation)
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "random",
## random.method = "nerlove")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Effects:
## var std.dev share
## idiosyncratic 3.985e+10 1.996e+05 0.066
## individual 5.602e+11 7.485e+05 0.934
## theta: 0.9313
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -601947 -145039 18713 154903 483623
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.0752e+06 4.4535e+05 2.4142 0.01577 *
## Q 3.2323e+06 1.6521e+05 19.5652 < 2.2e-16 ***
## PF 8.0229e-01 9.5804e-02 8.3743 < 2.2e-16 ***
## LF -3.7338e+06 6.0963e+05 -6.1247 9.084e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.1133e+13
## Residual Sum of Squares: 3.7726e+12
## R-Squared: 0.92622
## Adj. R-Squared: 0.92365
## Chisq: 1079.63 on 3 DF, p-value: < 2.22e-16
Comparando las R2 ajustadas de los Modelos Aleatorios, el mejor método obtenido es el de Walhus.
##
## Hausman Test
##
## data: C ~ Q + PF + LF
## chisq = 65.039, df = 3, p-value = 4.919e-14
## alternative hypothesis: one model is inconsistent
En caso de elegir algun modelo de Efectos Fijos o Aleatorios, el mejor en esta situación es el de Efectos Fijos ya que el valor de p-value es menor que 0.05.
# Filtrar la Aerolinea 1 (ejemplo)
df_a1 <- df[df$I == 1,]
# Convertir a Series de Tiempo
ts_a1 <- ts(df_a1$C, start = 1970, frequency = 1)
# Filtrar la Aerolinea 2 (ejemplo)
df_a2 <- df[df$I == 2,]
# Convertir a Series de Tiempo
ts_a2 <- ts(df_a2$C, start = 1970, frequency = 1)
# Filtrar la Aerolinea 3 (ejemplo)
df_a3 <- df[df$I == 3,]
# Convertir a Series de Tiempo
ts_a3 <- ts(df_a3$C, start = 1970, frequency = 1)
# Filtrar la Aerolinea 4 (ejemplo)
df_a4 <- df[df$I == 4,]
# Convertir a Series de Tiempo
ts_a4 <- ts(df_a4$C, start = 1970, frequency = 1)
# Filtrar la Aerolinea 5 (ejemplo)
df_a5 <- df[df$I == 5,]
# Convertir a Series de Tiempo
ts_a5 <- ts(df_a5$C, start = 1970, frequency = 1)
# Filtrar la Aerolinea 6 (ejemplo)
df_a6 <- df[df$I == 6,]
# Convertir a Series de Tiempo
ts_a6 <- ts(df_a6$C, start = 1970, frequency = 1)## Series: ts_a1
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 257691.43
## s.e. 44508.78
##
## sigma^2 = 2.987e+10: log likelihood = -188.19
## AIC=380.37 AICc=381.46 BIC=381.65
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 58.86321 160892 129527.1 -1.742419 5.395122 0.502644 0.4084903
## Series: ts_a2
## ARIMA(0,2,0)
##
## sigma^2 = 1.392e+10: log likelihood = -170.26
## AIC=342.53 AICc=342.89 BIC=343.09
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 11689.89 109830.2 79466.33 1.387268 3.747652 0.3056315 0.3172172
## Series: ts_a3
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 63155.14
## s.e. 13344.11
##
## sigma^2 = 2.685e+09: log likelihood = -171.32
## AIC=346.64 AICc=347.74 BIC=347.92
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 14.87618 48235.79 38474.72 -0.9277567 5.324145 0.538349 0.09130379
## Series: ts_a4
## ARIMA(0,2,0)
##
## sigma^2 = 1.469e+09: log likelihood = -155.65
## AIC=313.3 AICc=313.66 BIC=313.86
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 7232.074 35684.5 27472.98 1.761789 5.046326 0.2977402 0.1925091
## Series: ts_a5
## ARIMA(1,2,0)
##
## Coefficients:
## ar1
## -0.4543
## s.e. 0.2354
##
## sigma^2 = 775697764: log likelihood = -151.09
## AIC=306.18 AICc=307.38 BIC=307.31
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 3061.06 24911.01 14171.99 2.393894 4.771228 0.3823654 0.008627682
## Series: ts_a6
## ARIMA(1,2,0)
##
## Coefficients:
## ar1
## 0.5824
## s.e. 0.2281
##
## sigma^2 = 386182350: log likelihood = -146.65
## AIC=297.3 AICc=298.5 BIC=298.43
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 6829.403 17576.86 10190.16 2.076518 3.550582 0.1516841 -0.2989742
La serie de tiempo ARIMA con menor MAPE fue el de la Aerolina 6 por lo que se estara trabajando con esta.
## Point Forecast Lo 95 Hi 95
## 1985 1234478 1195962 1272994
## 1986 1471026 1364365 1577687
## 1987 1714311 1510670 1917953
## 1988 1961521 1635113 2287929
## 1989 2211016 1738872 2683160
plot(pronostico_a6, main = "Pronóstico de Costo Total Aerolinea 6",
xlab = "Año", ylab = "Miles de USD")# Escalar la base de datos
df_escalada <- df
df_escalada$I <- as.numeric(df_escalada$I)
df_escalada <- scale(df_escalada)
#Analisis Factorial
cfa <- cfa(modelo, df_escalada)
summary(cfa)## lavaan 0.6-19 ended normally after 3 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 13
##
## Number of observations 90
##
## Model Test User Model:
##
## Test statistic 63.804
## Degrees of freedom 5
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## C ~
## Q 1.000 0.053 18.826 0.000
## PF 0.194 0.065 3.000 0.003
## LF -0.154 0.025 -6.248 0.000
## I 0.105 0.052 1.999 0.046
## Y 0.140 0.063 2.211 0.027
## Q ~
## PF 0.239 0.046 5.213 0.000
## I -0.871 0.046 -18.985 0.000
## PF ~
## Y 0.931 0.038 24.233 0.000
## LF ~
## I -0.340 0.099 -3.429 0.001
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .C 0.048 0.007 6.708 0.000
## .Q 0.187 0.028 6.708 0.000
## .PF 0.131 0.020 6.708 0.000
## .LF 0.875 0.130 6.708 0.000