This interactive map shows average rent in ZIP codes across Rutherford County.
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("gtExtras"))
install.packages("gtExtras")
if (!require("leafpop"))
install.packages("leafpop")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("RColorBrewer"))
install.packages("RColorBrewer")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(gtExtras)
library(sf)
library(mapview)
library(leafpop)
library(RColorBrewer)
library(tidycensus)
# Transmitting API key
census_api_key("4718a693b0b1bcb7e4b57832f923f7e48a0323a1")
# Fetching the Census data
Census_Data <- get_acs(
geography = "zcta",
variables = c("DP04_0047", "DP04_0045"),
year = 2023,
survey = "acs5",
output = "wide",
geometry = FALSE
)
# Making better column names
Census_Data <- Census_Data %>%
rename(c("Rentals" = "DP04_0047E",
"Rentals_MOE" = "DP04_0047M",
"Households" = "DP04_0045E",
"Households_MOE" = "DP04_0045M"))
# A peek at the data
glimpse(Census_Data)
# Redownloading the rent data
FMR_RuCo <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/FMR_RuCo.csv")
# Redownloading, unzipping and importing the ZIP code map file
download.file(
"https://www2.census.gov/geo/tiger/GENZ2020/shp/cb_2020_us_zcta520_500k.zip",
"ZCTAs2020.zip"
)
unzip("ZCTAs2020.zip")
ZCTAMap <- read_sf("cb_2020_us_zcta520_500k.shp")
# Merging the rent data and ZIP code map
FMR_RuCo$ZIP <- as.character(FMR_RuCo$ZIP)
FMR_RuCo_Map <- left_join(FMR_RuCo, ZCTAMap, by = c("ZIP" = "ZCTA5CE20"))
FMR_RuCo_Map <- FMR_RuCo_Map %>%
select(-c(AFFGEOID20, GEOID20, NAME20, LSAD20, ALAND20, AWATER20))
FMR_RuCo_Map <- st_as_sf(FMR_RuCo_Map)
# Merging FMR_RuCo_Map and Census_Data
FMR_RuCo_Map <- left_join(FMR_RuCo_Map, Census_Data, by = c("ZIP" = "GEOID"))
# Mapping by ZIP code
ZIP_Map <- mapview(
FMR_RuCo_Map,
zcol = "ZIP_Average",
col.regions = brewer.pal(9, "RdPu"),
layer.name = "Average rent",
popup = popupTable(
FMR_RuCo_Map,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4",
"Rentals", "Rentals_MOE", "Households", "Households_MOE")
)
)
# Showing the map
ZIP_Map
# ACS codebooks
DetailedTables <- load_variables(2023, "acs5", cache = TRUE)
ProfileTables <- load_variables(2023, "acs5/profile", cache = TRUE)
SubjectTables <- load_variables(2023, "acs5/subject", cache = TRUE)