library(tidymodels)
## Warning: package 'tidymodels' was built under R version 4.4.2
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.6     ✔ rsample      1.2.1
## ✔ dials        1.3.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.2
## ✔ recipes      1.1.0
## Warning: package 'dials' was built under R version 4.4.2
## Warning: package 'infer' was built under R version 4.4.2
## Warning: package 'modeldata' was built under R version 4.4.2
## Warning: package 'parsnip' was built under R version 4.4.2
## Warning: package 'tune' was built under R version 4.4.2
## Warning: package 'workflows' was built under R version 4.4.2
## Warning: package 'workflowsets' was built under R version 4.4.2
## Warning: package 'yardstick' was built under R version 4.4.2
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Search for functions across packages at https://www.tidymodels.org/find/
url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-01-18/chocolate.csv"
chocolate <- read_csv(url)
## Rows: 2530 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): company_manufacturer, company_location, country_of_bean_origin, spe...
## dbl (3): ref, review_date, rating
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Explore Data

chocolate %>%
    ggplot(aes(rating)) +
  geom_histogram(bins = 15)

library(tidytext)
## Warning: package 'tidytext' was built under R version 4.4.2
tidy_chocolate <- chocolate %>%
    unnest_tokens(word, most_memorable_characteristics)

tidy_chocolate %>%
    count(word, sort = TRUE)
## # A tibble: 547 × 2
##    word        n
##    <chr>   <int>
##  1 cocoa     419
##  2 sweet     318
##  3 nutty     278
##  4 fruit     273
##  5 roasty    228
##  6 mild      226
##  7 sour      208
##  8 earthy    199
##  9 creamy    189
## 10 intense   178
## # ℹ 537 more rows
tidy_chocolate %>%
    group_by(word) %>%
    summarise(n = n(),
              rating = mean(rating)) %>%
    ggplot(aes(n, rating)) +
    geom_hline(yintercept = mean(chocolate$rating),
               lty = 2, color = "gray50", size = 1.5) +
    geom_point(color = "midnightblue", alpha = 0.7) +
    geom_text(aes(label = word), family = "IBMPlexSons", check_overlap = TRUE, vjust = "top", hjust = "left") +
    scale_x_log10()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database

Build Models

library(tidymodels)

set.seed(123)
choco_split <- initial_split(chocolate, strata = rating)
choco_train <- training(choco_split)
choco_test <- testing(choco_split)

set.seed(234)
choco_folds <- vfold_cv(choco_train, strata = rating)
choco_folds
## #  10-fold cross-validation using stratification 
## # A tibble: 10 × 2
##    splits             id    
##    <list>             <chr> 
##  1 <split [1705/191]> Fold01
##  2 <split [1705/191]> Fold02
##  3 <split [1705/191]> Fold03
##  4 <split [1706/190]> Fold04
##  5 <split [1706/190]> Fold05
##  6 <split [1706/190]> Fold06
##  7 <split [1707/189]> Fold07
##  8 <split [1707/189]> Fold08
##  9 <split [1708/188]> Fold09
## 10 <split [1709/187]> Fold10

Preprocessing

library(textrecipes)
## Warning: package 'textrecipes' was built under R version 4.4.2
choco_rec <-
  recipe(rating ~ most_memorable_characteristics, data = choco_train) %>%
  step_tokenize(most_memorable_characteristics) %>%
  step_tokenfilter(most_memorable_characteristics, max_tokens = 100) %>%
  step_tfidf(most_memorable_characteristics)

## just to check this works
prep(choco_rec) %>% bake(new_data = NULL)
## # A tibble: 1,896 × 101
##    rating tfidf_most_memorable_c…¹ tfidf_most_memorable…² tfidf_most_memorable…³
##     <dbl>                    <dbl>                  <dbl>                  <dbl>
##  1   3                        0                         0                      0
##  2   2.75                     0                         0                      0
##  3   3                        0                         0                      0
##  4   3                        0                         0                      0
##  5   2.75                     0                         0                      0
##  6   3                        1.38                      0                      0
##  7   2.75                     0                         0                      0
##  8   2.5                      0                         0                      0
##  9   2.75                     0                         0                      0
## 10   3                        0                         0                      0
## # ℹ 1,886 more rows
## # ℹ abbreviated names: ¹​tfidf_most_memorable_characteristics_acidic,
## #   ²​tfidf_most_memorable_characteristics_and,
## #   ³​tfidf_most_memorable_characteristics_astringent
## # ℹ 97 more variables: tfidf_most_memorable_characteristics_banana <dbl>,
## #   tfidf_most_memorable_characteristics_base <dbl>,
## #   tfidf_most_memorable_characteristics_basic <dbl>, …
rf_spec <-
  rand_forest(trees = 500) %>%
  set_mode("regression")

rf_spec
## Random Forest Model Specification (regression)
## 
## Main Arguments:
##   trees = 500
## 
## Computational engine: ranger
svm_spec <-
  svm_linear() %>%
  set_mode("regression")

svm_spec
## Linear Support Vector Machine Model Specification (regression)
## 
## Computational engine: LiblineaR
svm_wf <- workflow(choco_rec, svm_spec)
rf_wf <- workflow(choco_rec, rf_spec)

EValuate Models

library(LiblineaR)
## Warning: package 'LiblineaR' was built under R version 4.4.2
library(ranger)
## Warning: package 'ranger' was built under R version 4.4.2
library(doParallel)
## Warning: package 'doParallel' was built under R version 4.4.2
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 4.4.2
## 
## Attaching package: 'foreach'
## The following objects are masked from 'package:purrr':
## 
##     accumulate, when
## Loading required package: iterators
## Warning: package 'iterators' was built under R version 4.4.2
## Loading required package: parallel
doParallel::registerDoParallel()
contrl_preds <- control_resamples(save_pred = TRUE)

svm_rs <- fit_resamples(
  svm_wf,
  resamples = choco_folds,
  control = contrl_preds
)

ranger_rs <- fit_resamples(
  rf_wf,
  resamples = choco_folds,
  control = contrl_preds
)
collect_metrics(svm_rs)
## # A tibble: 2 × 6
##   .metric .estimator  mean     n std_err .config             
##   <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   0.347    10 0.00656 Preprocessor1_Model1
## 2 rsq     standard   0.367    10 0.0181  Preprocessor1_Model1
collect_metrics(ranger_rs)
## # A tibble: 2 × 6
##   .metric .estimator  mean     n std_err .config             
##   <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   0.350    10 0.00666 Preprocessor1_Model1
## 2 rsq     standard   0.358    10 0.0161  Preprocessor1_Model1
bind_rows(
  collect_predictions(svm_rs) %>%
    mutate(mod = "SVM"),
  collect_predictions(ranger_rs) %>%
    mutate(mod = "ranger")
) %>%
  ggplot(aes(rating, .pred, color = id)) +
  geom_abline(lty = 2, color = "gray50", size = 1.2) +
  geom_jitter(width = 0.5, alpha = 0.5) +
  facet_wrap(vars(mod)) +
  coord_fixed()

final_fitted <- last_fit(svm_wf, choco_split)
collect_metrics(final_fitted) ## metrics evaluated on the *testing* data
## # A tibble: 2 × 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       0.381 Preprocessor1_Model1
## 2 rsq     standard       0.348 Preprocessor1_Model1
final_wf <- extract_workflow(final_fitted)
predict(final_wf, choco_test[55, ])
## # A tibble: 1 × 1
##   .pred
##   <dbl>
## 1  3.51
extract_workflow(final_fitted) %>%
  tidy() %>%
  filter(term != "Bias") %>%
  group_by(estimate > 0) %>%
  slice_max(abs(estimate), n = 10) %>%
  ungroup() %>%
  mutate(term = str_remove(term, "tfidf_most_memorable_characteristics_")) %>%
  ggplot(aes(estimate, fct_reorder(term, estimate), fill = estimate > 0)) +
  geom_col(alpha = 0.8) +
  scale_fill_discrete(labels = c("low ratings", "high ratings")) +
  labs(y = NULL, fill = "More from...")